首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During apoptosis, the initiator caspase 9 is activated at the apoptosome after which it activates the executioner caspases 3 and 7 by proteolysis. During this process, caspase 9 is cleaved by caspase 3 at Asp(330), and it is often inferred that this proteolytic event represents a feedback amplification loop to accelerate apoptosis. However, there is substantial evidence that proteolysis per se does not activate caspase 9, so an alternative mechanism for amplification must be considered. Cleavage at Asp(330) removes a short peptide motif that allows caspase 9 to interact with IAPs (inhibitors of apoptotic proteases), and this event may control the amplification process. We show that, under physiologically relevant conditions, caspase 3, but not caspase 7, can cleave caspase 9, and this does not result in the activation of caspase 9. An IAP antagonist disrupts the inhibitory interaction between XIAP (X-linked IAP) and caspase 9, thereby enhancing activity. We demonstrate that the N-terminal peptide of caspase 9 exposed upon cleavage at Asp330 cannot bind XIAP, whereas the peptide generated by autolytic cleavage of caspase 9 at Asp315 binds XIAP with substantial affinity. Consistent with this, we found that XIAP antagonists were only capable of promoting the activity of caspase 9 when it was cleaved at Asp315, suggesting that only this form is regulated by XIAP. Our results demonstrate that cleavage by caspase 3 does not activate caspase 9, but enhances apoptosis by alleviating XIAP inhibition of the apical caspase.  相似文献   

2.
The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.  相似文献   

3.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

4.
Taru H  Yoshikawa K  Suzuki T 《FEBS letters》2004,567(2-3):248-252
beta-Amyloid precursor protein (APP) is a type I transmembrane protein. Its cleavages by beta- and gamma-secretases yield beta-amyloid, which is the main constituent of senile plaques in Alzheimer's disease (AD). In apoptotic cells and AD brains, APP is alternatively cleaved by caspases in the cytoplasmic region after the Asp664 residue (with respect to the numbering conversion for the APP695 isoform). Caspase-cleaved fragments of APP are cytotoxic and have been implicated in AD pathogenesis; however, the mechanisms regulating the cleavage have not been studied. APP is constitutively phosphorylated at Thr668 in brain. In the present study, we demonstrate that APP phosphorylated at Thr668 is less vulnerable to cytoplasmic cleavage by caspase-3 and caspase-8. This suggests that APP phosphorylation suppresses the generation of caspase-cleaved fragments of APP in the brain and that perturbation of this phosphorylation may be involved in APP-mediated neurotoxicity.  相似文献   

5.
Human epidermal growth factor receptor-2 (HER-2/ErbB2/neu), a receptor tyrosine kinase that is amplified/overexpressed in poor prognosis breast carcinomas, confers resistance to apoptosis by activating cell survival pathways. Here we demonstrate that the cytoplasmic tail of HER-2 is cleaved by caspases at Asp(1016)/Asp(1019) to release a approximately 47-kDa product, which is subsequently proteolyzed by caspases at Asp(1125) into an unstable 22-kDa fragment that is degraded by the proteasome and a predicted 25-kDa product. Both the 47- and 25-kDa products translocate to mitochondria, release cytochrome c by a Bcl-x(L)-suppressible mechanism, and induce caspase-dependent apoptosis. The 47- and 25-kDa HER-2 cleavage products share a functional BH3-like domain, which is required for cytochrome c release in cells and isolated mitochondria and for apoptosis induction. Caspase-cleaved HER-2 binds Bcl-x(L) and acts synergistically with truncated Bid to induce apoptosis, mimicking the actions of the BH3-only protein Bad. Moreover, the HER-2 cleavage products cooperate with Noxa to induce apoptosis in cells expressing both Bcl-x(L) and Mcl-1, confirming their Bad-like function. Collectively, our results indicate that caspases activate a previously unrecognized proapoptotic function of HER-2 by releasing a Bad-like cell death effector.  相似文献   

6.
7.
Activation of caspases results in the disruption of structural and signaling networks in apoptotic cells. Recent biochemical and cell biological studies have shown that components of the cadherin-catenin adhesion complex in epithelial adherens junctions are targeted by caspases during apoptosis. In epithelial cells, desmosomes represent a second type of anchoring junctions mediating strong cell-cell contacts. Using antibodies directed against a set of desmosomal proteins, we show that desmosomes are proteolytically targeted during apoptosis. Desmogleins and desmocollins, representing desmosome-specific members of the cadherin superfamily of cell adhesion molecules, are specifically cleaved after onset of apoptosis. Similar to E-cadherin, the desmoglein-3 cytoplasmic tail is cleaved by caspases. In addition the extracellular domains of desmoglein-3 and desmocollin-3 are released from the cell surface by a metalloproteinase activity. In the presence of caspase and/or metalloproteinase inhibitors, both cleavage reactions are almost completely inhibited. As reported previously, the desmosomal plaque protein plakoglobin is cleaved by caspase-3 during apoptosis. Our studies now show that plakophilin-1 and two other major plaque proteins, desmoplakin-1 and -2, are also cleaved by caspases. Immunofluorescence analysis confirmed that this cleavage results in the disruption of the desmosome structure and thus contributes to cell rounding and disintegration of the intermediate filament system.  相似文献   

8.
Apoptosis, or programmed cell death, is a vital cellular process often impaired in diseases such as cancer. Aspartic acid-directed proteases known as caspases cleave a broad spectrum of cellular proteins and are central constituents of the apoptotic machinery. Caspases are regulated by a variety of mechanisms including protein phosphorylation. One intriguing mechanism by which protein kinases can modulate caspase pathways is by blocking substrate cleavage through phosphorylation of residues adjacent to caspase cleavage sites. To explore this mechanism in detail, we recently undertook a systematic investigation using a combination of bioinformatics, peptide arrays, and peptide cleavage assays to identify proteins with overlapping protein kinase and caspase recognition motifs (Duncan et al., Sci Signal 4:ra30, 2011). These studies implicated protein kinase CK2 as a global regulator of apoptotic pathways. In this article, we extend the analysis of proteins with overlapping CK2 and caspase consensus motifs to examine the convergence of CK2 with specific caspases and to identify CK2/caspase substrates known to be phosphorylated or cleaved in cells. Given its constitutive activity and elevated expression in cancer, these observations suggest that the ability of CK2 to modulate caspase pathways may contribute to a role in promoting cancer cell survival and raise interesting prospects for therapeutic targeting of CK2.  相似文献   

9.
SRPK2 belongs to a family of serine/arginine (SR) protein-specific kinases (SRPKs), which phosphorylate SR domain-containing proteins in the nuclear speckles and mediate the pre-mRNA splicing. Previous studies have shown that SRPK2 plays a pivotal role in cell proliferation and apoptosis. However, how SRPK2 is regulated during the apoptosis is unclear. Here, we show that SRPK2 is cleaved by caspases at Asp-139 and -403 residues. Its N terminus cleaved product translocates into the nucleus and promotes VP16-induced apoptosis. Akt phosphorylation of SRPK2 prevents its apoptotic cleavage by caspases. 14-3-3β, the binding partner of Akt-phosphorylated SRPK2, further protects it from degradation. Hence, our results suggest that the N-terminal domain of SRPK2 cleaved by caspases translocates into the nucleus, where it promotes chromatin condensation and apoptotic cell death.  相似文献   

10.
We screened a library of human single-transmembrane proteins (sTMPs), produced by a cell-free system, using a luminescent assay to identify those that can be cleaved by caspase-8 (CASP8). Of the 407 sTMPs screened, only the interleukin-21 receptor (IL21R), vezatin (VEZT), and carbonic anhydrase XIV were cleaved at Asp344, Asp655 and Asp53, respectively. We confirmed that IL21R and VEZT were also cleaved in apoptotic HeLa cells with the cleavage sites. Interestingly, IL21R was cleaved within 30 min after apoptosis induction. Furthermore the CASP8-cleaved form of IL21R did not induce phosphorylation at Tyr705 of STAT3. Our results suggest that the interleukin-21 signaling cascade is negatively regulated by CASP8.  相似文献   

11.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

12.
p120-ras GTPase-activating protein (rasGAP) associates with Ras and negatively regulates Ras signaling by stimulating the intrinsic rate of Ras GTPase activity. rasGAP also associates with other cellular signaling proteins which suggest that rasGAP may play a role in coordinating other signal transduction pathways. Disruption of rasGAP in vivo results in extensive apoptosis. Fas-mediated apoptosis results in the activation of caspases that cleave cellular substrates which are important for maintaining cytoplasmic and nuclear integrity. We show here that rasGAP is proteolytically cleaved by caspases early in Fas-induced apoptosis of Jurkat cells. rasGAP was also cleaved by DNA-damaging chemotherapeutic agents and TNF-related apoptosis inducing ligand (TRAIL), also known as Apo2L. Based on the size of the products generated by cleavage of deletion mutants of rasGAP we predict that cleavage of rasGAP occurs in the hydrophobic region and between the SH2(2) and ras-p21 interacting domain which would leave an intact ras-p21 interacting domain. Interestingly, cleavage of rasGAP in vitro enhanced rasGAP hydrolysis activity. Our results demonstrate that diverse apoptotic stimuli cause caspase-mediated cleavage of rasGAP early in apoptosis.  相似文献   

13.
Zhu J  Yang Y  Wu J 《Cell research》2007,17(5):441-448
The protein encoded by bcl-2 proto-oncogene plays an important role in the mitochondria-mediated apoptotic pathway. Although the general role of Bcl-2 is anti-apoptotic, previous work showed that Bcl-2 fragments cleaved by caspases could promote apoptotic process. We report herein that Bcl-2 protein was cleaved to produce two fragments of around 23 kDa in human hepatocarcinoma BEL-7404 cells or in Bcl-2 overexpressing CHO cells induced by cisplatin. Treating cells with the general caspase inhibitor z-VAD-fmk blocked the induced cleavage of Bcl-2. Mutagenesis analyses showed that Bcl-2 was cleaved by caspases at two adjacent recognition sites in the loop domain (YEWD31↓AGD34↓V), which could be inhibited by caspase-8 and -3 inhibitors, respectively. Overexpression of the carboxyl terminal 23 kDa fragments increased the sensitivity of CHO cells to cisplatin-induced apoptosis. These results indicate that Bcl-2 can be cleaved into two close fragments by different caspases during cisplatin-induced apoptosis, both of which contribute to the acceleration ofapoptotic process.  相似文献   

14.
In the past few years, a role for apoptotic processes in the development of autoimmune diseases has been suggested. An increasing number of cellular proteins, which are modified during apoptosis, has been described, and many of these proteins have been identified as autoantigens. We have studied the effects of apoptosis on the La protein in more detail and for the first time demonstrate that this autoantigen is rapidly dephosphorylated after the induction of apoptosis. Dephosphorylation of the La protein was observed after induction of apoptosis by several initiators and in various cell types. Furthermore, we demonstrate that at least a subset of the La protein is proteolytically cleaved in vivo, generating a 45 kDa fragment. Dephosphorylation as well as cleavage of La is inhibited by ZnSO4 as well as by several tetrapeptide caspase inhibitors, indicating that these processes require the activation of caspases. Dephosphorylation of La is inhibited by low concentrations of okadaic acid, suggesting that a PP2A-like phosphatase is involved. Generation of the 45 kDa fragment is consistent with proteolytic cleavage at amino acids 371 and/or 374. The possible significance of the apoptotic changes in the La protein for autoantibody production is discussed.  相似文献   

15.
Proteolytic cleavage of key cellular proteins by caspases (ICE, CPP32, and Ich-1/Nedd2) may be crucial to the apoptotic process. The retinoblastoma tumor suppressor gene is a negative regulator of cell growth and the retinoblastoma protein (pRb) exhibits anti-apoptotic function. We show that pRb is cleaved during apoptosis induced by either UV irradiation or anti-Fas antibody. Our studies implicate CPP32-like activity in the proteolytic cleavage of pRb. The kinetics of proteolytic cleavage of pRb during apoptosis differ from that observed for other cellular proteins, suggesting that the specific cleavage of pRb during apoptosis may be an important event.  相似文献   

16.
17.
Glutathione-S-transferase (GST) fusion protein expression vectors are often employed for the expression and purification of proteins in Escherichia coli. GST is then removed by site-specific proteolysis using thrombin. However, the presence of internal thrombin cleavage sites in expressed proteins can severely affect the purification of intact proteins. Cysteine-dependent aspartate-specific proteases (caspases) are efficient enzymes with defined substrate specificity. Unlike most of the proteases used for the removal of affinity tags, caspases do not leave any amino acids at the amino-terminus of cleaved proteins. We have engineered the caspase-6 site VEMD in a pGEX vector to give the pC6-2 vector. The caspase-6 can be easily removed after cleavage. Here, we describe the detailed protocol for purifying proteins using our pC6-2/caspase-6 expression and purification system. The cleavage by caspase-6 occurs in <30 min and the entire procedure can be completed in 2 d.  相似文献   

18.
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.  相似文献   

19.
Generation of the amyloid peptide through proteolytic processing of the amyloid precursor protein by beta- and gamma-secretases is central to the etiology of Alzheimer's disease. The highly elusive beta-secretase was recently identified as a transmembrane aspartic proteinase, Asp2 (BACE). The Asp2 homolog Asp1 (BACE2/DRAP) has also been reported to exhibit beta-secretase cleavage of amyloid precursor protein. Most aspartic proteinases are generated as inactive proenzymes, requiring removal of the prodomain to generate active proteinase. Here we show that prodomain processing of Asp1 occurs between Leu(62) and Ala(63) and is autocatalytic. Asp1 cleaved a maltose-binding protein-Asp1 prodomain fusion protein and a synthetic peptide at this site. Mutation of one of the conserved catalytic aspartic acid residues in the active site of Asp1 to asparagine (D110N) abolished this cleavage. Mutation of P(1)' and P(2)' residues in the substrate to phenylalanine reduced cleavage at this site. Asp1 expressed in cells was the mature form, and prodomain processing occurred intramolecularly within the endoplasmic reticulum/early Golgi. Interestingly, a proportion of mature Asp1 was expressed on the cell surface. When full-length Asp1(D110N) was expressed in COS-7 cells, it was not processed, suggesting that no other proteinase can activate Asp1 in these cells.  相似文献   

20.
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a polarized ribbon. Furthermore, trans-Golgi membranes come in close apposition with ER (endoplasmic reticulum) membranes to form ER-trans-Golgi contact sites, which may facilitate transfer of newly synthesized ceramide from the ER to SM (sphingomyelin) synthase at the trans-Golgi via CERT (ceramide transfer protein). CERT interacts with both ER and Golgi membranes, and together with Golgi morphology contributes to efficient SM synthesis. In the present study, we show that Golgi disassembly during pro-apoptotic stress induced by TNFα (tumour necrosis factor α) and anisomycin results in decreased levels of CERT at the Golgi region. This is accompanied by a caspase-dependent loss of full-length CERT and reduction in de novo SM synthesis. In vitro, CERT is cleaved by caspases 2, 3 and 9. Truncated versions of CERT corresponding to fragments generated by caspase 2 cleavage at Asp213 were mislocalized and did not promote efficient de novo SM synthesis. Thus it is likely that during cellular stress, disassembly of Golgi structure together with inactivation of CERT by caspases causes a reduction in ceramide trafficking and SM synthesis, and could contribute to the cellular response to pro-apoptotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号