首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Many phylogenetic analyses that include numerous terminals but few genes show high resolution and branch support for relatively recently diverged clades, but lack of resolution and/or support for "basal" clades of the tree. The various benefits of increased taxon and character sampling have been widely discussed in the literature, albeit primarily based on simulations rather than empirical data. In this study, we used a well-sampled gene-tree analysis (based on 100 mitochondrial genomes of higher teleost fishes) to test empirically the efficiency of different methods of data sampling and phylogenetic inference to "correctly" resolve the basal clades of a tree (based on congruence with the reference tree constructed using all 100 taxa and 7990 characters). By itself, increased character sampling was an inefficient method by which to decrease the likelihood of "incorrect" resolution (i.e., incongruence with the reference tree) for parsimony analyses. Although increased taxon sampling was a powerful approach to alleviate "incorrect" resolution for parsimony analyses, it had the general effect of increasing the number of, and support for, "incorrectly" resolved clades in the Bayesian analyses. For both the parsimony and Bayesian analyses, increased taxon sampling, by itself, was insufficient to help resolve the basal clades, making this sampling strategy ineffective for that purpose. For this empirical study, the most efficient of the six approaches considered to resolve the basal clades when adding nucleotides to a dataset that consists of a single gene sampled for a small, but representative, number of taxa, is to increase character sampling and analyze the characters using the Bayesian method.  相似文献   

2.
The 567-terminal analysis of atpB, rbcL, and 18S rDNA was used as an empirical example to test the use of amino acid vs. nucleotide characters for protein-coding genes at deeper taxonomic levels. Nucleotides for atpB and rbcL had 6.5 times the amount of possible synapomorphy as amino acids. Based on parsimony analyses with unordered character states, nucleotides outperformed amino acids for all three measures of phylogenetic signal used (resolution, branch support, and congruence with independent evidence). The nucleotide tree was much more resolved than the amino acid tree, for both large and small clades. Nearly twice the percentage of well-supported clades resolved in the 18S rDNA tree were resolved using nucleotides (91.8%) relative to amino acids (49.2%). The well-supported clades resolved by both character types were much better supported by nucleotides (98.7% vs. 83.8% average jackknife support). The faster evolving nucleotides with a smaller average character-state space outperformed the slower evolving amino acids with a larger average character-state space. Nucleotides outperformed amino acids even with 90% of the terminals deleted. The lack of resolution on the amino acid trees appears to be caused by a lack of congruence among the amino acids, not a lack of replacement substitutions.  相似文献   

3.
The phylogenetic relationships of 22 species of Coelopidae are reconstructed based on a data matrix consisting of morphological and DNA sequence characters (16S rDNA, EF-1alpha). Optimal gap and transversion costs are determined via a sensitivity analysis and both equal weighting and a transversion cost of 2 are found to perform best based on taxonomic congruence, character incongruence, and tree support. The preferred phylogenetic hypothesis is fully resolved and well-supported by jackknife, bootstrap, and Bremer support values, but it is in conflict with the cladogram based on morphological characters alone. Most notably, the Coelopidae and the genus Coelopa are not monophyletic. However, partitioned Bremer Support and an analysis of node stability under different gap and transversion costs reveal that the critical clades rendering these taxa non-monophyletic are poorly supported. Furthermore, the monophyly of Coelopidae and Coelopa is not rejected in analyses using 16S rDNA that was manually aligned. The resolution of the tree based on this reduced data sets is, however, lower than for the tree based on the full data sets. Partitioned Bremer support values reveal that 16S rDNA characters provide the largest amount of tree support, but the support values are heavily dependent on analysis conditions. Problems with direct comparison of branch support values for trees derived using fixed alignments with those obtained under optimization alignment are discussed. Biogeographic history and available behavioral and genetic data are also discussed in light of this first cladogram for Coelopidae based on a quantitative phylogenetic analysis.  相似文献   

4.
When molecules and morphology produce incongruent hypotheses of primate interrelationships, the data are typically viewed as incompatible, and molecular hypotheses are often considered to be better indicators of phylogenetic history. However, it has been demonstrated that the choice of which taxa to include in cladistic analysis as well as assumptions about character weighting, character state transformation order, and outgroup choice all influence hypotheses of relationships and may positively influence tree topology, so that relationships between extant taxa are consistent with those found using molecular data. Thus, the source of incongruence between morphological and molecular trees may lie not in the morphological data themselves but in assumptions surrounding the ways characters evolve and their impact on cladistic analysis. In this study, we investigate the role that assumptions about character polarity and transformation order play in creating incongruence between primate phylogenies based on morphological data and those supported by multiple lines of molecular data. By releasing constraints imposed on published morphological analyses of primates from disparate clades and subjecting those data to parsimony analysis, we test the hypothesis that incongruence between morphology and molecules results from inherent flaws in morphological data. To quantify the difference between incongruent trees, we introduce a new method called branch slide distance (BSD). BSD mitigates many of the limitations attributed to other tree comparison methods, thus allowing for a more accurate measure of topological similarity. We find that releasing a priori constraints on character behavior often produces trees that are consistent with molecular trees. Case studies are presented that illustrate how congruence between molecules and unconstrained morphological data may provide insight into issues of polarity, transformation order, homology, and homoplasy.  相似文献   

5.
In this study, we used an empirical example based on 100 mitochondrial genomes from higher teleost fishes to compare the accuracy of parsimony-based jackknife values with Bayesian support values. Phylogenetic analyses of 366 partitions, using differential taxon and character sampling from the entire data matrix of 100 taxa and 7,990 characters, were performed for both phylogenetic methods. The tree topology and branch-support values from each partition were compared with the tree inferred from all taxa and characters. Using this approach, we quantified the accuracy of the branch-support values assigned by the jackknife and Bayesian methods, with respect to each of 15 basal clades. In comparing the jackknife and Bayesian methods, we found that (1) both measures of support differ significantly from an ideal support index; (2) the jackknife underestimated support values; (3) the Bayesian method consistently overestimated support; (4) the magnitude by which Bayesian values overestimate support exceeds the magnitude by which the jackknife underestimates support; and (5) both methods performed poorly when taxon sampling was increased and character sampling was not increases. These results indicate that (1) the higher Bayesian support values are inappropriate (in magnitude), and (2) Bayesian support values should not be interpreted as probabilities that clades are correctly resolved. We advocate the continued use of the relatively conservative bootstrap and jackknife approaches to estimating branch support rather than the more extreme overestimates provided by the Markov Chain Monte Carlo-based Bayesian methods.  相似文献   

6.
Exon-intron structure and evolution of the Lipocalin gene family   总被引:6,自引:0,他引:6  
The Lipocalins are an ancient protein family whose expression is currently confirmed in bacteria, protoctists, plants, arthropods, and chordates. The evolution of this protein family has been assessed previously using amino acid sequence phylogenies. In this report we use an independent set of characters derived from the gene structure (exon-intron arrangement) to infer a new lipocalin phylogeny. We also present the novel gene structure of three insect lipocalins. The position and phase of introns are well preserved among lipocalin clades when mapped onto a protein sequence alignment, suggesting the homologous nature of these introns. Because of this homology, we use the intron position and phase of 23 lipocalin genes to reconstruct a phylogeny by maximum parsimony and distance methods. These phylogenies are very similar to the phylogenies derived from protein sequence. This result is confirmed by congruence analysis, and a consensus tree shows the commonalities between the two source trees. Interestingly, the intron arrangement phylogeny shows that metazoan lipocalins have more introns than other eukaryotic lipocalins, and that intron gains have occurred in the C-termini of chordate lipocalins. We also analyze the relationship of intron arrangement and protein tertiary structure, as well as the relationship of lipocalins with members of the proposed structural superfamily of calycins. Our congruence analysis validates the gene structure data as a source of phylogenetic information and helps to further refine our hypothesis on the evolutionary history of lipocalins.  相似文献   

7.
Abstract. Historically, characters from early animal development have been a potentially rich source of phylogenetic information, but many traits associated with the gametes and larval stages of animals with complex life cycles are widely suspected to have evolved frequent convergent similarities. Such convergences will confound true phylogenetic relationships. We compared phylogenetic inferences based on early life history traits with those from mitochondrial DNA sequences for sea stars in the genera Asterina, Cryptasterina , and Patiriella (Valvatida: Asterinidae). Analysis of these two character sets produced phylogenies that shared few clades. We quantified the degree of homoplasy in each character set when mapped onto the phylogeny inferred from the alternative characters. The incongruence between early life history and nucleotide characters implies more homoplasy in the life history character set. We suggest that the early life history traits in this case are most likely to be misleading as phylogenetic characters because simple adaptive models predict convergence in early life histories. We show that adding early life history characters may slightly improve a phylogeny based on nucleotide sequences, but adding nucleotide characters may be critically important to improving inferences from phylogenies based on early life history characters.  相似文献   

8.
Abstract.— Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria ( Buchnera ) supported long-term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon , sequences from four mitochondrial, one nuclear, and one endosymbiont gene ( trpB ) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino-Hasegawa test and the likelihood-ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.  相似文献   

9.
This study presents a new phylogeny of erigonine spiders with emphasis on genera from the Neotropics. Thirty‐nine exemplar taxa representing mostly Neotropical genera were added to a global sample of 31 erigonine and 12 outgroup exemplar taxa analyzed in a previous study. These 82 taxa were coded for 176 (172 informative) mostly morphological characters. Eighty‐one characters were identical to or modified from the 73 (67 informative) characters included in a previous study; the remaining 95 characters are new. The complete data set includes 70 erigonine exemplars representing 65 genera, seven nonerigonine linyphiid exemplars, and five exemplars representing four araneoid families in the outgroup. Cladistic analysis resulted in a single most parsimonious tree (L =904, CI = 0.23, RI = 0.58; uninformative characters excluded: L = 900, CI = 0.23). This paper explores the implications of the new topology for the evolution of several characters of interest in erigonine evolution. The phylogeny implies that the desmitracheate condition is a synapomorphy of erigonines, with a reversal to the haplotracheate condition in one large clade within Erigoninae. We infer that the loss of the paracymbium in Neotropical erigonines occurred twice and may have progressed by different evolutionary pathways. Our phylogeny differs markedly from the previous cladistic hypothesis of erigonine relationships. We investigate how the addition of characters and taxa (alone and together) have altered the earlier hypothesis of erigonine phylogeny. We conclude that topological changes from the previous study to the current one are largely the result of adding and modifying characters, not adding taxa. Continuous Jackknife Function (CJF) analysis predicts that the inclusion of additional character data will continue to imply changes in the relationships among taxa in our analysis.  相似文献   

10.
Reconciling discordant morphological and molecular phylogenies remains a problem in modern systematics. By examining conflicting DNA-hybridization and morphological phylogenies of sand dollars, I show that morphological criteria may be used to help evaluate the reliability of molecular phylogenies where they differ from morphological trees. All available criteria for assessing the reliability of DNA-hybridization phylogenies suggest that the sand dollar DNA-hybridization phylogeny is robust. Standard homology-recognition criteria are used to assess the a priori reliabilities of the morphological attributes associated with the node drawn into question by the DNA data, and it is shown that these attributes are among the least phylogenetically informative of all the morphological characters. Moreover, the questioned node has the smallest number of supporting characters, and most of these characters are associated with the food grooves, which suggests that they may be functionally correlated. Thus, on the basis of the analysis of the morphological data and given the robustness of the DNA tree, the DNA phylogeny is preferred. Further, paleobiogeographic data support the DNA tree rather than the morphological tree, and a plausible heterochronic mechanism has been proposed that may account for the homoplasious morphological evolution that must have occurred if the DNA tree is correct.  相似文献   

11.
The comparison of independent phylogenies is a valuable approach to the study of evolutionary pattern and process. Available data on eastern North American Phlox, including our recent ITS phylogeny, suggest that relationships are complicated in the group and that hybridization may have been a contributing factor. We used restriction site data from the chloroplast genome to develop a second phylogeny for eastern Phlox. Sampling was the same as that for the ITS study and consisted of 79 samples (including all 22 eastern Phlox species and most eastern subspecies, as well as multiple populations of many taxa). The resulting cpDNA phylogeny agrees with the ITS phylogeny in many respects, strengthening earlier conclusions. Nevertheless, incongruence between the trees is noteworthy: many samples, particularly of members of the P. pilosa and P. glaberrima complexes, are placed in different clades. A variety of tests were carried out to assess congruence in terms of topological patterns, character congruence, and homogeneity of data sets. Significant conflict between the phylogenies is discussed in light of the hypothesis that hybridization has affected relationships in this genus.  相似文献   

12.
The fact that characters may co-vary in organism groups because of shared ancestry and not always because of functional correlations was the initial rationale for developing phylogenetic comparative methods. Here we point out a case where similarity due to shared ancestry can produce an undesired effect when conducting an independent contrasts analysis. Under special circumstances, using a low sample size will produce results indicating an evolutionary correlation between characters where an analysis of the same pattern utilizing a larger sample size will show that this correlation does not exist. This is the opposite effect of increased sample size to that expected; normally an increased sample size increases the chance of finding a correlation. The situation where the problem occurs is when co-variation between the two continuous characters analysed is clumped in clades; e.g. when some phylogenetically conservative factors affect both characters simultaneously. In such a case, the correlation between the two characters becomes contingent on the number of clades sharing this conservative factor that are included in the analysis, in relation to the number of species contained within these clades. Removing species scattered evenly over the phylogeny will in this case remove the exact variation that diffuses the evolutionary correlation between the two characters - the variation contained within the clades sharing the conservative factor. We exemplify this problem by discussing a parallel in nature where the described problem may be of importance. This concerns the question of the presence or absence of Rensch's rule in primates.  相似文献   

13.
THE EFFECT OF ORDERED CHARACTERS ON PHYLOGENETIC RECONSTRUCTION   总被引:2,自引:0,他引:2  
Abstract Morphological structures are likely to undergo more than a single change during the course of evolution. As a result, multistate characters are common in systematic studies and must be dealt with. Particularly interesting is the question of whether or not multistate characters should be treated as ordered (additive) or unordered (non-additive). In accepting a particular hypothesis of order, numerous others are necessarily rejected. We review some of the criteria often used to order character states and the underlying assumptions inherent in these criteria.
The effects that ordered multistate characters can have on phylogenetic reconstruction are examined using 27 data sets. It has been suggested that hypotheses of character state order are more informative then hypotheses of unorder and may restrict the number of equally parsimonious trees as well as increase tree resolution. Our results indicate that ordered characters can produce more, equal or less equally parsimonious trees and can increase, decrease or have no effect on tree resolution. The effect on tree resolution can be a simple gain in resolution or a dramatic change in sister-taxa relationships. In cases where several outgroups are included in the data matrix, hypotheses of order can change character polarities by altering outgroup topology. Ordered characters result in a different topology from unordered characters only when the hierarchy of the cladogram disagrees with the investigator's a priori hypothesis of order. If the best criterion for assessing character evolution is congruence with other characters, the practice of ordering multistate characters is inappropriate.  相似文献   

14.
A phylogenetic analysis of the interrelationships of the barbets (Capitonidae) and the toucans (Aves: Ramphastidae, Superfamily Ramphastoidea) is presented. Thirty-two morphological characters from the literature and independent osteological observations were analysed. Character polarity was determined by outgroup comparison to the Picidae, Indicatoridae, Galbulidae, Bucconidae and Coraciiformes. Four alternative phylogenetic hypotheses were compared: (1) the overall most parsimonious morphological phylogeny, (2) the most parsimonious morphological phylogeny in which the capitonids and ramphastids were hypothesized as monophyletic sister groups, and (3) and (4) the most parsimonious hypotheses for the evolution of the morphological characters within two proposed DNA-DNA hybridization phylogenies of the ramphastoids. The analysis focused on the higher level relationships of ramphastids and capitonids and interrelationships among capitonid genera. Two cladistic analyses were performed using 26 phylogenetically informative characters, and the PAUP and CONTREE computer alogorithms. The most parsimonious morphological phylogeny required fewer character changes and had a lower consistency index than any of the alternative hypotheses but congruence between the most parsimonious phylogeny and the second, revised DNA-DNA hybridization hypothesis was very high. Based on these results the monophyly of the Capitonidae is rejected. The ramphastids and the Neotropical capitonids form a well corroborated clade within the pantropical ramphastoid radiation. Neither the African, Asian nor New World capitonids is monophyletic. The genus Trachyphonus is the sister group to all other capitonids and ramphastids. The sister group to the ramphastids is the genus Semnornis. The interrelationships of the Old World capitonids excluding Trachyphonus are not completely resolved by these morphological data but one of the alternative phylogenetic resolutions is presented as a preliminary hypothesis. The clades in this resolved phylogeny are diagnosed and the palaeontology and biogeography of the ramphastoids arc-reviewed in light of this new evidence. A phylogenetic classification is proposed in which the Capitonidae is rejected and the capitonids and ramphastids are placed in seven subfamilies of the Ramphastidae.  相似文献   

15.
While Bayesian analysis has become common in phylogenetics, the effects of topological prior probabilities on tree inference have not been investigated. In Bayesian analyses, the prior probability of topologies is almost always considered equal for all possible trees, and clade support is calculated from the majority rule consensus of the approximated posterior distribution of topologies. These uniform priors on tree topologies imply non-uniform prior probabilities of clades, which are dependent on the number of taxa in a clade as well as the number of taxa in the analysis. As such, uniform topological priors do not model ignorance with respect to clades. Here, we demonstrate that Bayesian clade support, bootstrap support, and jackknife support from 17 empirical studies are significantly and positively correlated with non-uniform clade priors resulting from uniform topological priors. Further, we demonstrate that this effect disappears for bootstrap and jackknife when data sets are free from character conflict, but remains pronounced for Bayesian clade supports, regardless of tree shape. Finally, we propose the use of a Bayes factor to account for the fact that uniform topological priors do not model ignorance with respect to clade probability.  相似文献   

16.
The aim of the present paper is to explore the role of the character in phylogenetic systematics. I argue that too much emphasis is put on particular characters rather than congruence both in the choice of phylogenetic hypotheses and in taxonomic decisions. This means that the logical priority of the tree over the characters is neglected. To a large extent, this is a result of not paying enough attention to the individuality thesis which states that clades are historical individuals and hence contingent in nature.  相似文献   

17.
External morphological characters are the basis of our understanding of diversity and species relationships in many darter clades. The past decade has seen the publication of many studies utilizing mtDNA sequence data to investigate darter phylogenetics, but only recently have nuclear genes been used to investigate darter relationships. Despite a long tradition of use in darter systematics few studies have examined the phylogenetic utility of external morphological characters in estimating relationships among species in darter clades. We present DNA sequence data from the mitochondrial cytochrome b (cytb) gene, the nuclear encoded S7 intron 1, and discretely coded external morphological characters for all 20 species in the darter clade Nothonotus. Bayesian phylogenetic analyses result in phylogenies that are in broad agreement with previous studies. The cytb gene tree is well resolved, while the nuclear S7 gene tree lacks phylogenetic resolution, node support, and is characterized by a lack of reciprocal monophyly for many of the Nothonotus species. The phylogenies resulting from analysis of the morphological dataset lack resolution, but nodes present are found in the cytb and S7 gene trees. The highest resolution and node support is found in the Bayesian combined data phylogeny. Based on our results we propose continued exploration of the phylogenetic utility of external morphological characters in other darter clades. Given the extensive lack of reciprocal monophyly of species observed in the S7 gene tree we predict that nuclear gene sequences may have limited utility in intraspecific phylogeographic studies of Nothonotus darters.  相似文献   

18.
Cladistics has become a widely used method for phylogenetic reconstruction.Because of rapid improvement Of cladistic theories and methodologies,and application of new data,especially,molecular data,it is becoming realistic to reconstruct phylogenies of organisms,and to establish natural classifications based on these phylogenies.This paper reviews some current cladistic theories and methods in a practical way,such as choosing characters,defining character states,polarizing characters,analyzing data matrices, calculating consensus cladograms,choosing among multiple equally most parsimonious cladograms,estimating reliability of cladograms,and applying cladograms to classification, character evolution,and biogeography. Based on 36 morphological characters.a parsimony analysis of 12 species representing six sections in subgenus Lindera and an outgroup species from subgenus lteodaphne of the genus Lindera(Lauraceae)was conducted.The results suggest a close relationship between section Lindera and section Sphaerocarpae,which is different from the previous phylogenetic hypothesis within the genus.In the strict consensus cladogram,two species,L.megaphylla and L.chienii,from section Cupuliformes are in the most primitive and the most advanced clades respectively,indicating that the section is polyphyletic.The cladogram also suggests that section Lindera be a polyphyletic group.  相似文献   

19.
Near-full-length 18S and 28S rRNA gene sequences were obtained for 33 nematode species. Datasets were constructed based on secondary structure and progressive multiple alignments, and clades were compared for phylogenies inferred by Bayesian and maximum likelihood methods. Clade comparisons were also made following removal of ambiguously aligned sites as determined using the program ProAlign. Different alignments of these data produced tree topologies that differed, sometimes markedly, when analyzed by the same inference method. With one exception, the same alignment produced an identical tree topology when analyzed by different methods. Removal of ambiguously aligned sites altered the tree topology and also reduced resolution. Nematode clades were sensitive to differences in multiple alignments, and more than doubling the amount of sequence data by addition of 28S rRNA did not fully mitigate this result. Although some individual clades showed substantially higher support when 28S data were combined with 18S data, the combined analysis yielded no statistically significant increases in the number of clades receiving higher support when compared to the 18S data alone. Secondary structure alignment increased accuracy in positional homology assignment and, when used in combination with paired-site substitution models, these structural hypotheses of characters and improved models of character state change yielded high levels of phylogenetic resolution. Phylogenetic results included strong support for inclusion of Daubaylia potomaca within Cephalobidae, whereas the position of Fescia grossa within Tylenchina varied depending on the alignment, and the relationships among Rhabditidae, Diplogastridae, and Bunonematidae were not resolved.  相似文献   

20.
Exhaustion of morphologic character states among fossil taxa   总被引:2,自引:0,他引:2  
Frequencies of new character state derivations are analyzed for 56 fossil taxa. The hypothesis that new character states are added continuously throughout clade history can be rejected for 48 of these clades. Two alternative explanations are considered: finite states and ordered states. The former hypothesizes a limited number of states available to each character and is tested using rarefaction equations. The latter hypothesizes that there are limited possible descendant morphologies for any state, even if the character has infinite potential states. This is tested using power functions. The finite states hypothesis explains states: steps relationships significantly better than does the ordered states hypothesis in 14 cases; the converse is true for 14 other cases. Under either hypothesis, trilobite clades show appreciably more homoplasty after the same numbers of steps than do molluscs, echinoderms, or vertebrates. The prevalence of the exhaustion pattern among different taxonomic groups implies that worker biases are not to blame and instead implicates biological explanations such as intrinsic constraints or persistent selective trends. Regardless of the source of increased homoplasy, clades appear to exhaust their available character spaces. Nearly all examined taxa show significant increases in proportions of incompatible character pairs (i.e., those necessarily implying homoplasy) as progressively younger taxa are added to character matrices. Thus, a deterioration of hierarchical structure accompanies character state exhaustion. Exhaustion has several implications: (1) the basic premise of cladistic analyses (i.e., that maximum congruence reflects homology rather than homoplasy) becomes increasingly less sound as clades age; (2) sampling high proportions of taxa probably is needed for congruence to discern homoplasy from homology; (3) stratigraphic data might be necessary to discern congruent homoplasy from congruent homology; and (4) in many cases, character states appear to have evolved in ordered patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号