首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology of the rice inflorescence, called the panicle, is determined mainly by the activities of axillary meristems including primary, secondary, and spikelet meristems. Recently, in maize, the RAMOSA1 ENHANCER LOCUS2 (REL2) gene, orthologous to the Arabidopsis shoot apical meristem fate-determining TOPLESS, was shown to be involved in the regulation of axillary meristem determinacy. In order to investigate the function of the rice REL2 homolog, we identified and characterized the rice REL2 gene (OsREL2). Compared to other rice TPL homologs, OsREL2 gene expression stayed relatively low throughout panicle development. We characterized a T-DNA insertion osrel2 mutant that showed pleiotropic phenotypic defects, such as defects in panicle heading, sterile lemma elongation, and panicle development, suggesting the OsREL2 functions in multiple developmental processes. In particular, osrel2 developed shorter axillary branches and reduced numbers of lateral organs on axillary branches in comparison to the wild-type, indicating that OsREL2 is important in axillary meristem maintenance. Interestingly, osrel2 produced more primary branches and fewer secondary branches than the wild-type. These results suggest that OsREL2 is involved in branch formation regulation, presumably by suppressing primary branch formation and promoting secondary branch formation.  相似文献   

2.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

3.
A gain-of-function Arabidopsis mutant was identified via activation tagging genetic screening. The mutant exhibited clustered ectopic floral buds on the surface of inflorescence stems. The mutant was designated as sef for stem ectopic flowers. Our detailed studies indicate that the ectopic flower meristems are initiated from the differentiated cortex cells. Inverse PCR and sequence analysis indicated that the enhancer-containing T-DNA from the activation tagging construct, SKI015, was inserted upstream of the previously cloned WUS gene encoding a homeodomain protein. Studies from RT-PCR, RNA in situ hybridization and transgenic plant analysis further confirmed that the phenotypes of sef are caused by the overexpression of WUS. Our results suggest that overexpression of WUS could trigger the cell pluripotence and reestablish a new meristem in cortex. The type of new meristems caused by WUS overexpression was dependent upon the developmental and physiological stages of a plant. With the help of some undefined factors in the reproductive organs the new meristems differentiated into floral buds. In a vegetative growth plant, however, only the new vegetative buds can be initiated upon the overexpression of WUS. These studies provide new insights of WUS on flower development.  相似文献   

4.
Sim GE  Loh CS  Goh CJ 《Plant cell reports》2007,26(4):383-393
We have successfully developed a method to induce early in vitro flowering of the self-pollinated seedlings of a tropical orchid hybrid, Dendrobium Madame Thong-In. Transition of vegetative shoot apical meristem to inflorescence meristem was observed when young protocorms were cultured in modified KC liquid medium. In contrast, protocorms cultured on Gelrite-solidified medium only produced axillary shoots and roots. CW was required to trigger the transitional shoot apical meristem and BA enhanced inflorescence stalk initiation and flower bud formation. However, normal flower development was deformed in liquid medium but developed fully upon transferring to two-layered (liquid over Gelrite-solidified) medium. Under optimal condition, in vitro flowering was observed about 5 months after seed sowing. Segregation of flower colours was observed in these seedlings and seedpods formed upon artificial pollination of the in vitro flowers.  相似文献   

5.
6.
The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.  相似文献   

7.
Proper function of the LAX1 gene is required for the development of axillary meristem in rice. Here, we report genetic and phenotypic characters of a novel recessive mutant allele of rice LAX1 gene, lax1-6, which showed abnormal panicle phenotypes with few numbers of elongated primary rachis branches. Beside typical lax mutant phenotype, abnormalities of lax1-6 mutant allele were observed with defect lemma and palea primordial in floral organs. The lax1-6 mutant locus was linked between SSR markers RM7594 and RM5389 on chromosome 1 with 1.02% and 1.0% recombination frequencies, respectively. Molecular analysis revealed that the lax1-6 mutant allele was caused by a transversion mutation of nucleotide T to G substitution that resulted in an amino acid substitution from serine (S) to alanine (A) at the 117th position from amino terminus of a basic helix-loop-helix protein coded by LAX1 gene. Furthermore, we found that the Oryza sativa indica type cv. IRRI347 contained 24 nucleotide deletion in the upstream sequence in the LAX1 gene, but this deletion did not influence panicle morphology, which demonstrated that the deletion is a polymorphism in rice. All together, the lax1-6 mutant is a newly identified allele of LAX1 gene displaying the abnormal axillary meristems and inflorescences in rice.  相似文献   

8.
9.

Background

Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development.

Results

Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions.

Conclusions

SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.
  相似文献   

10.
Mutant Arabidopsis thaliana taeniata (tae) plants are characterized by an altered morphology of leaves and the inflorescence. At the beginning of flowering, the inflorescence produces fertile flowers morphologically intermediate between a shoot and a flower. The recessive mutation tae also causes the formation of ectopic meristems and shoot rosettes on leaves. The expressivity of the mutant characters depend on the temperature and photoperiod. Analysis of the activity of KNOX class I genes in the leaves of the tae mutant has demonstrated the expression of genes KNAT2 and STM and an increase in the expression of genes KNAT1 and KNAT6 compared to wild-type leaves. These data indicate that the TAE gene negatively regulates the KNAT1, KNAT2, KNAT6, and STM genes.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1068–1074.Original Russian Text Copyright © 2005 by Lebedeva, Ezhova, Melzer.  相似文献   

11.
The <Emphasis Type="Italic">FT/TFL1</Emphasis> gene family in grapevine   总被引:6,自引:0,他引:6  
The FT/TFL1 gene family encodes proteins with similarity to phosphatidylethanolamine binding proteins which function as flowering promoters and repressors. We show here that the FT/TFL1 gene family in Vitis vinifera is composed of at least five genes. Sequence comparisons with homologous genes identified in other dicot species group them in three major clades, the FT, MFT and TFL1 subfamilies, the latter including three of the Vitis sequences. Gene expression patterns are in agreement with a role of VvFT and VvMFT as flowering promoters; while VvTFL1A, VvTFL1B and VvTFL1C could be associated with vegetative development and maintenance of meristem indetermination. Overexpression of VvFT in transgenic Arabidopsis plants generates early flowering phenotypes similar to those produced by FT supporting a role for this gene in flowering promotion. Overexpression of VvTFL1A does not affect flowering time but the determination of flower meristems, strongly altering inflorescence structure, which is consistent with the biological roles assigned to similar genes in other species.  相似文献   

12.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

13.
ALBINO3, a homologue of PPF1 in Arabidopsis, encodes a chloroplast protein, and is essential for chloroplast differentiation. In the present study, ALBINO3(−) transgenic plants exhibited a significant decrease in both the number of rosette leaves at bolting and the days before bolting, suggesting the important roles of ALBINO3 in regulating flowering during non-inductive short-day photoperiods. ALBINO3 mRNA was apparently accumulated in shoot apical meristem and floral meristems around the shoot apical meristem in wild-type plants. ALBINO3 might be predominantly involved in inducing the floral repression pathway by activating the expression of TFL1, and by suppressing the expression of LFY, respectively, in the shoot apical meristem. Moreover, the function of ALBINO3 in regulating flowering transition depended on the expression of CO and GA1, because ALBINO3 might function in the downstream integration of the photoperiod-dependent and the photoperiod-independent pathways. These results suggest that ALBINO3 may have an important integrative function in the flowering process in Arabidopsis.  相似文献   

14.
The mutant dark-germinating 1 (dkg1) of the fern Ceratopteris richardii was originally characterized by two phenotypes, germination in the dark and inhibition of germination by light. In this work, we examined whether other phenotypes are present in the gametophytic generation of the dkg1 mutant. Although dkg1 prothalli grown in darkness were elongated as in the case of the wild type, some developmental processes were found to proceed even in complete darkness: (1) the apical and subapical zones developed largely by forming a lateral meristem; (2) asymmetric cell division for rhizoid differentiation occurred in the subapical elongation zone; (3) an archegonium was formed in the proximity of the meristem; and (4) chloroplast relocation could occur without de novo protein synthesis. Furthermore, these processes were shown to be under the control of phytochrome in the wild-type gametophytes on the basis of red/far-red reversibility. These results indicate that the DKG1 gene is pleiotropic and is involved in several phytochrome-mediated responses in the gametophyte development of C. richardii.  相似文献   

15.
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5′ flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50–60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3–15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15–35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
The Relationship between auxin transport and maize branching   总被引:8,自引:2,他引:6  
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.  相似文献   

18.
Busch A  Gleissberg S 《Planta》2003,217(6):841-848
FLORICAULA/ LEAFY-like genes were initially characterized as flower meristem identity genes. In a range of angiosperms, expression occurs also in vegetative shoot apices and developing leaves, and in some species with dissected leaves expression is perpetuated during organogenesis at the leaf marginal blastozone. The evolution of these expression patterns and associated functions is not well understood. We have isolated and characterized a FLORICAULA-like gene from California Poppy, Eschscholzia californica Cham. (Papaveraceae), a species belonging to the basal eudicot clade Ranunculales. EcFLO encodes a putative 416-amino-acid protein with highest similarity to homologous genes from Trochodendron and Platanus. We show that EcFLO mRNA is expressed during the vegetative phase of the shoot apical meristem and in developing dissected leaves in a characteristic manner. This pattern is compared to that of other eudicots and discussed in terms of evolution of FLORICAULA expression and function.  相似文献   

19.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

20.
Organogenesis in plants is controlled by meristems. Shoot apical meristems form at the apex of the plant and produce leaf primordia on their flanks. Axillary meristems, which form in the axils of leaf primordia, give rise to branches and flowers and therefore play a critical role in plant architecture and reproduction. To understand how axillary meristems are initiated and maintained, we characterized the barren inflorescence2 mutant, which affects axillary meristems in the maize inflorescence. Scanning electron microscopy, histology and RNA in situ hybridization using knotted1 as a marker for meristematic tissue show that barren inflorescence2 mutants make fewer branches owing to a defect in branch meristem initiation. The construction of the double mutant between barren inflorescence2 and tasselsheath reveals that the function of barren inflorescence2 is specific to the formation of branch meristems rather than bract leaf primordia. Normal maize inflorescences sequentially produce three types of axillary meristem: branch meristem, spikelet meristem and floral meristem. Introgression of the barren inflorescence2 mutant into genetic backgrounds in which the phenotype was weaker illustrates additional roles of barren inflorescence2 in these axillary meristems. Branch, spikelet and floral meristems that form in these lines are defective, resulting in the production of fewer floral structures. Because the defects involve the number of organs produced at each stage of development, we conclude that barren inflorescence2 is required for maintenance of all types of axillary meristem in the inflorescence. This defect allows us to infer the sequence of events that takes place during maize inflorescence development. Furthermore, the defect in branch meristem formation provides insight into the role of knotted1 and barren inflorescence2 in axillary meristem initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号