首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of phosphatidylethanolamine (PE) N-methyltransferase in liver microsomes, measured using endogenous microsomal PE as a substrate, was elevated 2-fold in the choline-deficient state. However, methyltransferase activity assayed in the presence of a saturating concentration of phosphatidyl-N-mono-methylethanolamine or microsomal PE was unchanged by choline deficiency. Accompanying the increase in methyltransferase activity in liver homogenates and microsomes were increased PE concentrations and an increased PE to phosphatidylcholine ratio. The concentration of other phospholipids was unchanged. Immunoblot analysis of choline-deficient and choline-supplemented rat liver microsomes using a rabbit polyclonal anti-PE N-methyltransferase antibody revealed that the amount of enzyme protein was unaltered. The regulation of methyltransferase by PE levels was also investigated in cultured hepatocytes obtained from choline-deficient rat livers. Supplementation of deficient hepatocytes with 200 microM methionine resulted in a 50% reduction in cellular PE levels over a 12-h period. PE N-methyltransferase activity assayed with endogenous PE was also reduced by 50%, but phosphatidyl-N-monomethylethanolamine-dependent activity was unchanged. A 4-h supplementation with choline did not affect PE levels or methyltransferase activity. Either methionine or choline supplementation resulted in net synthesis of cellular phosphatidylcholine. Immunoblotting of membranes from methionine-supplemented hepatocytes revealed no change in enzyme protein, a further indication that enzyme mass was constitutive, and activity was regulated by the concentration of PE.  相似文献   

2.
In addition to the well established cyclooxygenase pathway, cultured aortic smooth muscle cells convert arachidonic acid to several polar metabolites identified by high performance liquid chromatography and gaz chromatography — mass spectrometry. 15-Hydroxyeicosatetraenoic acid, 12-Hydroxyeicosatetraenoic acid and 5-Hydroxyeicosatetraenoic acid are the major products formed. These observations indicate that the rabbit aortic smooth muscle cells are a potential source of lipoxygenase products and raise the possibility that this pathway of arachidonic acid metabolism can influence the biological functions of arterial myocytes under normal and pathological conditions.  相似文献   

3.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

4.
Phosphatidylcholine is the major lipid of all cellular membranes. Phosphatidylcholine biosynthesis in microsomes involves two enzyme pathways, choline phosphotransferase and phosphatidyl-ethanolamine methyltransferase. The present study was designed to examine the effect of zinc deficiency on these two enzymes. Male, weanling Long-Evans rats were fed a biotin-enriched 20% egg white diet deficient in zinc for 15–45 d. The specific activity (pmol phosphatidylcholine formed/min/mg microsomal protein) of choline phosphotransferase, phsophatidylethanolamine methyltransferase, and phos-phatidyldimethylethanolamine methyltransferase was determined. The latter assay measures the third methylation of phosphatidyl-ethanolamine to phosphatidylcholine. Zinc deficiency resulted in a significant increase over controls in the specific activity of phospha-tidylethanolamine methyltransferase and phosphatidyldimethyl-ethanolamine methyltransferase in liver and spleen microsomes. A significant increase in the picomoles of phosphatidylcholine formed by the choline phosphotransferase pathway occurred in liver microsomes of zinc-deficient animals. In the brain microsomes a significant decrease in specific activity of phosphatidylethanolamine methyltransferase, phosphatidyldimethylethanolamine methyltransferase, and choline phosphotransferase occurred among zinc-deficient ani-mals. These data suggest that zinc deficiency alters the biosynthesis of phosphatidylcholine, the major lipid of cellular membranes.  相似文献   

5.
A mitogen for growth-arrested cultured bovine aortic smooth muscle cells was purified to homogeneity from the supernatant of cultured human umbilical vein endothelial cells by heparin affinity chromatography and reverse-phase high performance liquid chromatography. This mitogen was revealed to be tissue factor pathway inhibitor-2 (TFPI-2), which is a Kunitz-type serine protease inhibitor. TFPI-2 was expressed in baby hamster kidney cells using a mammalian expression vector. Recombinant TFPI-2 (rTFPI-2) stimulated DNA synthesis and cell proliferation in a dose-dependent manner (1-500 nM). rTFPI-2 activated mitogen-activated protein kinase (MAPK) activity and stimulated early proto-oncogene c-fos mRNA expression in smooth muscle cells. MAPK, c-fos expression and the mitogenic activity were inhibited by a specific inhibitor of MAPK kinase, PD098059. Thus, the mitogenic function of rTFPI-2 is considered to be mediated through MAPK pathway. TFPI has been reported to exhibit antiproliferative action after vascular smooth muscle injury in addition to the ability to inhibit activation of the extrinsic coagulation cascade. However, structurally similar TFPI-2 was found to have a mitogenic activity for the smooth muscle cell.  相似文献   

6.
Phospholipid methyltransferase, the enzyme that converts phosphatidylethanolamine into phosphatidylcholine with S-adenosyl-L-methionine as the methyl donor, was purified to apparent homogeneity from rat liver microsomal fraction. When analysed by SDS/polyacrylamide-gel electrophoresis only one protein, with molecular mass about 50 kDa, is detected. This protein could be phosphorylated at a single site by incubation with [alpha-32P]ATP and the catalytic subunit of cyclic AMP-dependent protein kinase. A less-purified preparation of the enzyme is mainly composed of two proteins, with molecular masses about 50 kDa and 25 kDa, the 50 kDa form being phosphorylated at the same site as the homogeneous enzyme. After purification of both proteins by electro-elution, the 25 kDa protein forms a dimer and migrates on SDS/polyacrylamide-gel electrophoresis with molecular mass about 50 kDa. Peptide maps of purified 25 kDa and 50 kDa proteins are identical, indicating that both proteins are formed by the same polypeptide chain(s). It is concluded that rat liver phospholipid methyltransferase can exist in two forms, as a monomer of 25 kDa and as a dimer of 50 kDa. The dimer can be phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

7.
1. Phenobarbitone injection did not affect the concentration of phospholipids in the liver endoplasmic reticulum, but it increased the rate of incorporation of [(32)P]orthophosphate into the phospholipids. 20-Methylcholanthrene caused a transient increase in total phospholipid but a decrease in the turnover rate of the phospholipids. 2. Incorporation of [(32)P]orthophosphate into phosphatidylcholine, compared with that into phosphatidylethanolamine, was increased by phenobarbitone injection but decreased by 20-methylcholanthrene injection. 3. The activity of S-adenosylmethionine-phosphatidylethanolamine methyltransferase increased 12h after phenobarbitone injection, when incorporation of [(32)P]orthophosphate into phosphatidylcholine was a maximum, but at other times, and after 20-methylcholanthrene injection, the activity of the enzyme did not correlate with the rate of phosphatidylcholine synthesis. 4. [(14)C]Glycerol was incorporated more rapidly into phosphatidylcholine than into phosphatidylethanolamine, whereas [(32)P]orthophosphate and [(14)C]ethanolamine were incorporated more rapidly into phosphatidylethanolamine than into phosphatidylcholine. 5. Incorporation of [(32)P]orthophosphate into phosphatidylethanolamine of liver slices incubated in vitro was much more rapid than into phosphatidylcholine, and incorporation into phosphatidylcholine was markedly stimulated by addition of methionine to the medium. Changes in the incorporation of [(32)P]orthophosphate into phospholipids observed in vivo after injection of phenobarbitone or methylcholanthrene could not be reproduced in slices incubated in vitro. 6. It is concluded that phenobarbitone injection causes an increased rate of turnover of total phospholipids in the endoplasmic reticulum and an increased conversion of phosphatidylethanolamine into phosphatidylcholine, whereas 20-methylcholanthrene injection depresses both the turnover rate of total phospholipids and the formation of phosphatidylcholine.  相似文献   

8.
9.
Cultured endothelial cells release a potent vasoconstrictor peptide, endothelin. Cumulative addition of synthetic endothelin to isolated rabbit aortic rings elicited a concentration-dependent increase in contractile tension which was endothelium-independent. In cultured rabbit vascular smooth muscle cells loaded with the fluorescent dye fura 2, endothelin induced a concentration-dependent increase in [Ca2+]i over the range of 0.01 to 100 nM. Moreover, in the absence of extracellular Ca2+, endothelin could still induce an increase in [Ca2+]i. In addition, endothelin stimulated 45Ca2+ efflux from preloaded vascular smooth muscle cells in the presence and absence of extracellular Ca2+, as well as stimulating 45Ca2+ influx in a concentration-dependent manner. Measurement of inositol phosphates in [3H]-myoinositol-labelled vascular vascular trisphosphate. Unlabelled endothelin inhibited (125I)-endothelin binding to cultured rabbit vascular smooth muscle cells in a concentration-dependent manner. Binding was not inhibited by other vasoactive hormones or calcium channel ligands, suggesting cell surface receptors specific for endothelin. We conclude that one of the initial membrane events in the action of endothelin is to induce phospholipase C-stimulated PIP2 hydrolysis and that this signalling mechanism is initiated by endothelin/receptor interaction at the plasma membrane.  相似文献   

10.
Nakahata N  Takano H  Ohizumi Y 《Life sciences》2000,66(5):PL 71-PL 76
Thromboxane A2 (TXA2) analogue STA2 produced a tonic contraction in rabbit aortic smooth muscles. In the present study, we examined phosphatidylcholine (PC) hydrolysis as a signaling pathway for the tonic contraction in rabbit aortic smooth muscles. In the primary cultured cells labeled with [3H]choline, STA2 caused an accumulation of [3H]phosphorylcholine, a metabolite of PC by PC-specific PLC, in a concentration-dependent manner. The accumulation of [3H]phosphorylcholine was inhibited by SQ29548, a TXA2 receptor antagonist. In the muscle strips, STA2-induced tonic contraction was potently inhibited by D609, an inhibitor of PC-specific phospholipase C in a concentration-dependent manner with the IC50 of about 10 microM. Norepinephrine-induced tonic contraction was also inhibited by D609 with a weaker potency. These results strongly suggest that stimulation of TXA2 receptor results in the activation of PC-specific phospholipase C to yield diacylglycerol that contributes to the tonic contraction.  相似文献   

11.
L-929 cell surface membranes were incubated with S-adenosyl-l-[methyl-3H]-methionine and found to contain phosphatidylethanolamine: S-adenosylmethionine N-methyltransferase (phosphatidylethanolamine N-methyltransferase) activity. The enzyme or combination of enzymes responsible for this activity methylated endogenous phosphatidylethanolamine and its methylated derivatives to yield phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidylcholine. Maximum enzyme activity was expressed at pH 6.9, the reaction was not dependent on the presence of divalent cations, and exogenously added phospholipids did not stimulate the rate of reaction. Phospholipid methylation was inhibited by S-adenosyl-l-homocysteine and by local anaesthetic drugs such as chlorpromazine and tetracaine which partition into the lipid bilayer. Control experiments demonstrated that the surface membrane-associated methyltransferase activity was not due to contamination of surface membrane preparations with intracellular membranes. Surface membranes were found to have higher specific methyltransferase activities than whole L-cell homogenates or endoplasmic reticulum-enriched microsomes. The low rate of methyltransferase function expressed in vitro (approximately 1 pmol/min · mg protein) suggests that phospholipid methylation is not a major metabolic source of surface membrane phosphatidylcholine.  相似文献   

12.
Summary The effect of a reduction in protein kinase C activity on the metabolism of exogenous [3H]diC8 by freshly isolated smooth muscle cells from rabbit aorta and cultured A10 smooth muscle cells was determined. The metabolism of [3H]diC8 by both smooth muscle cell preparations was predominantly by hydrolysis to yield monoC8 and glycerol (lipase pathway); very little radioactivity was incorporated into phospholipids. Diacylglycerol lipase activity measured in vitro with A10 cell homogenates was much greater than diacylglycerol kinase activity. The addition of the protein kinase C inhibitor H-7 to incubations of isolated aortic smooth muscle cells and cultured A10 cells had no significant effect on the metabolism of [3H]diC8. Protein kinase C activity in cultured A10 cells preincubated for 20 h with a phorbol ester was reduced to 14% of control as a consequence of down-regulation, but diC8 metabolism was not changed. Therefore, protein kinase C does not regulate the metabolism of diacylglycerols in aortic smooth muscle cells.Abbreviations IP3 inositol 1,4,5-trisphosphate - DG diacylglycerol - MG monoacylglycerol - PL phospholipid(s) - diC8 dioctanoylglycerol - H-7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride - monoC8 monooctanoylglycerol - PS phosphatidylserine - PDBu phorbol 12,13-dibutyrate  相似文献   

13.
Elastase-like enzyme in the aorta of spontaneously hypertensive rats   总被引:2,自引:0,他引:2  
In an attempt to obtain information regarding vascular elastase in arterial hypertension, we examined biochemical changes in elastase-like enzyme activity, and the intravascular localization of elastase by immunohistochemical techniques in the aorta of spontaneously hypertensive rats (SHR). In the biochemical study, aortic elastase-like enzyme activity was significantly higher in SHR than in controls. Using an antibody against rat pancreatic elastase raised in the rabbit, it was demonstrated immunohistochemically that the enzyme was localized in the endothelial cells and subendothelial spaces in the aorta of control animals. In SHR, elastase was also demonstrated in medial smooth muscle cells and particularly in the modified smooth muscle cells in areas of intimal thickening. Some vacuoles in the smooth muscle cells also showed positive enzyme staining. Elastase seems to play an important role in the development of hypertensive vascular changes.  相似文献   

14.
Sarmesin, [Sar1, Tyr(Me)4]angiotensinII], has been reported to be a competitive angiotensin II (AII) receptor antagonist in rat smooth muscle preparations (Scanlon et al., (1984), Life Science 34, 317-321). In the present study, sarmesin displaced AII from its binding sites in rat aortic smooth muscle cells and in a rabbit aorta membrane preparation (IC50 5 and 6 nM resp.; Ki 4.1 and 5.3 resp.) In rabbit aortic rings, sarmesin (0.003-3 microM) produced concentration-dependent contractions (ED50 89 nM) and this effect was inhibited by saralasin. No contraction was observed in the rat aorta up to 100 microM. In rabbit aortic rings, sarmesin, at the same concentrations that produced contraction, inhibited contractions induced by AII in a competitive manner (pA2 7, 26). These results indicate that, in rabbit aortic rings sarmesin is a partial agonist of AII receptors.  相似文献   

15.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

16.
A turnover of cytoplasmic triacylglycerol was studied in cultured rat, rabbit, and bovine aortic smooth muscle cells. Cytoplasmic triacylglycerol was labeled with [3H]glycerol in the presence of oleic acid in the medium and its loss from the cell was studied in the presence of carrier glycerol. Multiple additions of Isuprel or dibutyryl cyclic AMP during the chase period did not enhance the loss of labeled triacylglycerol. The rate of hydrolysis of cellular triacylglycerol was unchanged in the absence or in the presence of 100 microM chloroquine. Modulation of cellular cholesterol content by addition of low density lipoprotein or high density apolipoprotein--sphingomyelin liposomes did not affect the residence time of the cellular triacylglycerol. We conclude that cytoplasmic triacylglycerol in cultured aortic smooth muscle cells is metabolized by an extralysosomal enzyme which is neither catecholamine responsive nor affected by modulation of cellular cholesterol.  相似文献   

17.
A β-galactosidase activity has recently been used as a histochemical marker of replicative senescence in human fibroblasts and keratinocytes. To establish whether this marker could be used to detect senescence of vascular cells, we have investigated its presence in cultures of serially passaged human umbilical vein endothelial cells and rabbit aortic smooth muscle cells. β-Galactosidase activity was detected by light microscopy using the chromogenic substrate 5-bromo-4-chloro-3-indolyl β- -galactopyranoside. In endothelial cell cultures, lysosomal β-galactosidase activity, which is detected at pH 4.0, was present in all cells regardless of their replicative age. In contrast, senescence-associated β-galactosidase activity, which is detected at pH 6.0, was absent in the majority of cells in early passage cultures (<15 cumulative population doublings), but was present in a large proportion of cells (up to 62%) in late passage cultures (>30 cumulative population doublings); in intermediate passage cultures (15–30 cumulative population doublings) it was found in fewer than 15% of the cells. The increase in the percentage of senescence-associated β-galactosidase-positive cells correlated with a decrease in the cell density at confluence and with a marked increase in cell size. Counterstaining with an antibody directed against the endothelial cell marker CD31 showed that senescent cells retained the expression of this antigen. Senescence-associated β-galactosidase was also detected in serially passaged, but not in primary explant cultures of rabbit aortic vascular smooth muscle cells. The presence of senescence-associated β-galactosidase in cultured vascular smooth muscle cells and endothelial cells suggests that this marker could be used to study the role of cellular senescence in vascular disease.  相似文献   

18.
Summary Polyclonal antibodies to chicken gizzard calponin were used to localize calponin and determine calponin expression in rabbit and human aortic smooth muscle cells in culture. Calponin was localized on the microfilament bundles of cultured smooth muscle cells. Early in primary culture,ccalponin staining was accumulated preferentially in the central part of the cell body. With time in culture, the number of calponin-negative smooth muscle cells increased while the distribution of calponin in calponin-positive cells became more even along the stress fibers. Calponin content and the calponin/actin ratio decreased about 5-fold in rabbit aortic smooth muscle cells during the first week in primary culture and remained low in proliferating cells. The same tendency in calponin expression was observed when human vascular smooth muscle was studied. On cryostat sections of human umbilical cord, calponin antibodies mainly stained vessel walls of both the arteries and veins, although less intensive labelling was also observed in non-vascular tissue. When primary isolates of human aortic intimal and medial smooth muscle cells were compared with corresponding passaged cultures, it was found that calponin content was reduced about 9-fold in these cells in culture and was similar to the amount of calponin in endothelial cells and fibroblasts. Thus, high calponin expression may be used as an additional marker of vascular smooth muscle cell contractile phenotype.  相似文献   

19.
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.  相似文献   

20.
The effect of hyper- and hypothyroid, hypophysectomy and adrenalectomy on phosphatidylcholine biosynthetic enzymes, phosphatidylethanolamine methyltransferase, phosphatidyldimethylethanolamine methyltransferase and choline phosphotransferase of liver microsomes was measured in rats. There was a significant increase in the specific activity of phosphatidylethanolamine methyltransferase in the hyperthyroid rats. There was a significant reduction in the specific activity of phosphatidylethanolamine methyltransferase and phosphatidyldimethylethanolamine methyltransferase in the hypothyroid states. The choline phosphotransferase increased significantly in the hyperthyroid state and decreased in the hypothyroid animals. Hypophysectomy resulted in a significant increase in specific activity of choline phosphotransferase. A reduction in the specific activity of the phosphatidylethanolamine methyltransferase occurred after 28 days of hypophysectomy. Adrenalectomy resulted in a significant stimulation of the specific activity of phosphatidylethanolamine methyltransferase and choline phosphotransferase in liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号