首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The electrophysiological effects of CCK-8 were studied in the rabbit nucleus accumbens. CCK-8 was found to influence neurotransmitter (modulator) systems so as to enhance their action. For example, CCK-8 enhanced the effects of stimulation of the glutaminergic pathways, the fimbria. In addition, when CCK-8 was co-administered with dopamine and acetylcholine, their suppressive effect on the fimbria evoked response was enhanced. Therefore, CCK-8 appears to be capable of enhancing the influence of multiple neurotransmitter (modulator) systems.  相似文献   

2.
Regional distribution of catecholamines in nucleus accumbens of the rabbit   总被引:1,自引:1,他引:0  
Abstract: The nucleus accumbens is an important telencephalic region, which is the target limbic and mesolimbic pathways. Because of an ongoing physiological study of the effects of dopamine, we wanted to determine regional differences of dopamine and norepinephrine concentrations in the nucleus. As determined by radioenzymatic assays, dopamine levels were not significantly different in the anterior-posterior dimension, averaging approximately 187 ng dopamine/mg protein. Substantial amounts of norepinephrine were found throughout the nucleus, but the levels were significantly higher in the caudal portions of the nucleus, being approximately 4.5 times higher than in the anterior portions.  相似文献   

3.
Wu XJ  Zhang J  Wei CL  Liu ZQ  Ren W 《生理学报》2012,64(2):170-176
吗啡长期作用后会产生成瘾(addiction),严重影响其临床应用。前额叶(prefrontal cortex,PFC)投射至伏隔核(nucleus accumbens,NAc)的谷氨酸能突触对奖赏效应有重要的调节作用,但该突触在吗啡成瘾中的具体作用尚不完全清楚。为探讨PFC至NAc的谷氨酸能突触在成瘾形成过程中的具体作用及其机制,本研究利用成年大鼠在体记录的方式,记录电刺激PFC至NAc谷氨酸能传入纤维引起的NAc壳区场兴奋性突触后电位(filed excitatory postsynaptic potential,fEPSP),观察慢性吗啡/盐水预处理后依次急性皮下注射吗啡及腹腔注射纳络酮对fEPSP幅值和配对脉冲比率(paired-pulse ratio,PPR)的影响。结果显示,与基础fEPSP相比,慢性盐水预处理组急性皮下注射吗啡能够增强fEPSP幅值并减小PPR,纳络酮能够反转这种现象。慢性吗啡预处理组急性皮下注射吗啡增强的fEPSP幅度较盐水预处理组减小,纳络酮同样能够反转吗啡作用;吗啡注射后PPR仅有降低的趋势,而纳络酮注射能够显著增高基础PPR。这些结果表明,吗啡首次作用可通过突触前机制增强PFC到NAc的谷氨酸能突触传递,而慢性吗啡预处理后,由吗啡再次作用诱导的突触前谷氨酸能突触传递增强有所减弱,提示NAc中可能存在对成瘾药物的神经适应性现象。  相似文献   

4.
Abstract: The purpose of the present study was to investigate the effects of repeated administration of the neurotensin receptor antagonist, SR 48692, on the activity of the mesocortical and mesolimbic dopaminergic (DA) systems. We showed that daily administration of SR 48692 for 15 days (1 mg/kg i.p.) to Wistar rats increased the expression of tyrosine hydroxylase mRNA and protein in the ventral mesencephalon. Simultaneous in vivo microdialysis in the shell part of the nucleus accumbens (AcbSh) and the medial prefrontal cortex (mPFC) revealed that blockade of neurotensin receptors for 15 days decreased basal extracellular levels of DA (∼50%) and its metabolites in the AcbSh, whereas no modification in DA levels was observed in the mPFC. In animals submitted to a forced swimming stress, which preferentially enhanced extracellular DA levels in the mPFC, treatment with SR 48692 failed to affect the stress-induced increase in DA. Moreover, given that glucocorticoids can modulate the activity of mesencephalic DA neurons, we examined the effect of the same SR 48692 treatment on corticosterone levels in dialysates from the AcbSh. We found that repeated SR 48692 did not affect the basal levels of free corticosterone, but significantly reduced the increase induced by forced swimming stress. The present results demonstrate that repeated treatment with SR 48692 modulates selectively the DA mesolimbic system when compared with the mesocortical pathway. These findings suggest that long-term treatment with selective neurotensin receptor antagonists could have potential clinical utility in the treatment of neuropsychiatric disorders associated with hyperactivity of the mesolimbic DA systems or the hypothalamic-pituitary-adrenal axis.  相似文献   

5.
To investigate the regulatory effects of somatodendritic D2 receptors on the terminal's extracellular dopamine (DA) concentration, a D2 antagonist (eticlopride) was infused directly into the ventral tegmental area via a microdialysis probe in chloral hydrate-anesthetized rats. Extracellular DA changes in both the nucleus accumbens (N ACC) and the medial prefrontal cortex (mPFC) were monitored. Infusion of 10.0 fM eticlopride had no effect on DA in the mPFC (110.2 +/- 10.0% of baseline) but significantly increased DA in the N ACC (150.1 +/- 11.7%). Infusion of a higher dose of eticlopride (100.0 or 1,000.0 fM) significantly augmented the DA in the mPFC (121.1 +/- 7.6 and 180.7 +/- 25.8%, respectively) but surprisingly had no effect on DA in the N ACC (111.5 +/- 7.3 and 104.1 +/- 8.7%, respectively). To further investigate whether the bluntness of DA increase in the N ACC was due to DA receptor activation in the mPFC, eticlopride or SCH23390 was infused into the mPFC prior to and during intrategmental eticlopride infusion, and the change of DA in the N ACC was simultaneously monitored. During intra-mPFC 1.0 nM eticlopride infusion but not during 10.0 nM SCH23390 administration (95.5 +/- 6.1%), intrategmental 1,000.0 fM eticlopride infusion could further elevate DA in the N ACC (130.0 +/- 4.6%). Our results indicated that (1) the mesolimbic and the mesocortical pathways were under tonic inhibition by somatodendritic D2 receptors; (2) the DA concentration in the N ACC first increased and then returned to baseline while the intrategmental infusion dose of eticlopride increased; and (3) the bluntness of DA increase in the N ACC resulted from the D2 receptor activation in the mPFC.  相似文献   

6.
High-affinity uptake of neurotransmitter substrates in synaptosome-containing homogenates and tissue concentrations of amino acids were examined in subcortical areas 5-6 days after bilateral N-methyl-D-aspartate lesions confined to rat medial prefrontal cortex. D-[3H]Aspartate (32% of control) and [3H] gamma-aminobutyric acid ( [3H]GABA) (60% of control) uptakes were significantly reduced in medial prefrontal cortex, whereas [3H]choline (110% of control) uptake was unchanged, suggesting the production of axon-sparing lesions. The uptake of D-[3H]aspartate (76% of control), but not of [3H]GABA or [3H]choline, was significantly reduced in nucleus accumbens, with no concomitant reduction in amino acid concentrations. When examined in serial coronal sections, reduced D-[3H]aspartate uptake was confined to the most anterior 500 micron of nucleus accumbens (67% of contralateral sample). No significant reductions of uptake or amino acid concentrations were observed in caudate putamen or ventral tegmental area. These results suggest a role for glutamate or aspartate as neurotransmitters in projections from medial prefrontal cortex to anterior nucleus accumbens. Medial prefrontal cortex may represent the major excitatory cortical input to the nucleus accumbens.  相似文献   

7.
Amphetamine is known to increase dopamine (DA) release by acting directly on dopamine transporters (DAT), primarily through a mechanism that is independent of impulse flow. We present evidence to show that impulse-dependent increase in DA outflow in the nucleus accumbens (NAc) is produced by amphetamine depending on genetic background. Systemic amphetamine produced higher accumbal DA release in the widely exploited C57BL/6J background than in the DBA/2J. By contrast, intra-accumbens perfusion using increasing doses of amphetamine dramatically increased DA outflow in the DBA/2J background, whereas very low DA outflow was evident in C57BL/6J mice. The fast sodium channel blocker tetrodotoxin infused through the microdialysis probe abolished accumbal DA release induced by systemic amphetamine only in the C57BL/6J background. Finally, medial prefrontal excitotoxic lesion abolished amphetamine-induced mesoaccumbens DA release in C57BL/6J mice, without significantly affecting it in the DBA/2J background. These results represent the first functional evidence in an in vivo study that amphetamine can increase DA release in the NAc mainly through an impulse-dependent mechanism regulated by prefronto-cortical glutamatergic transmission. Moreover, they point to a genetic control of impulse-dependent DA release in the accumbens, providing an exploitable tool to investigate aetiological factors involved in psychopathology and drug addiction.  相似文献   

8.
Abstract: A subtractive hybridization and differential screening procedure was used to detect up-regulation of cytochrome c oxidase (CO) subunits I, III, and IV mRNA in the nucleus accumbens (NAc) of rats chronically treated with cocaine. Northern blot analyses of mRNA isolated from individual rats confirmed that CO subunit I was up-regulated by chronic, but not acute, cocaine in two brain regions, the NAc (33%) and caudate-putamen (CP)(35%). CO activity, used as a measure of metabolic activity, was increased by 88% in the NAc, and decreased by 20% in the medial prefrontal cortex (mPFC), the day after chronic treatment was terminated. CO enzyme activity was not regulated in the CP, or in other brain regions not involved in drug reward. CO activity in both the NAc and mPFC showed unique time-dependent patterns of regulation during the week after chronic cocaine treatment.  相似文献   

9.
In non‐food‐deprived rats a palatable meal induces a transient increase in dopamine output in the prefrontal cortex and nucleus accumbens shell and core; habituation to this response develops with a second palatable meal, selectively in the shell, unless animals are food‐deprived. A palatable meal also induces time‐dependent modifications in the dopamine and cAMP‐regulated phosphoprotein of Mr 32 000 (DARPP‐32) phosphorylation pattern that are prevented when SCH 23390, a selective dopamine D1 receptor antagonist, is administered shortly after the meal. This study investigated whether dopaminergic habituation in the shell had a counterpart in DARPP‐32 phosphorylation changes. In non‐food‐deprived rats, two consecutive palatable meals were followed by similar sequences of modifications in DARPP‐32 phosphorylation levels in the prefrontal cortex and nucleus accumbens core, while changes after the second meal were blunted in the shell. In food‐deprived rats two consecutive meals also induced similar phosphorylation changes in the shell. Finally, SCH 23390 administered shortly after the first palatable meal in non‐food‐deprived rats inhibited DARPP‐32 phosphorylation changes in response to the first meal, and prevented the habituation to a second meal in terms of dopaminergic response and DARPP‐32 phosphorylation changes. Thus, dopamine D1 receptor stimulation plays a role in the development of habituation.  相似文献   

10.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration.  相似文献   

11.
Bu Q  Yang Y  Yan G  Hu Z  Hu C  Duan J  Lv L  Zhou J  Zhao J  Shao X  Deng Y  Li Y  Li H  Zhu R  Zhao Y  Cen X 《Journal of Proteomics》2012,75(4):1330-1342
It has been known that the reinforcing effects and long-term consequences of morphine are closely associated with nucleus accumbens (NAc) in the brain, a key region of the mesolimbic dopamine pathway. However, the proteins involved in neuroadaptive processes and withdrawal symptom in primates of morphine dependence have not been well explored. In the present study, we performed proteomes in the NAc of rhesus monkeys of morphine dependence and withdrawal intervention with clonidine or methadone. Two-dimensional electrophoresis was used to compare changes in cytosolic protein abundance in the NAc. We found a total of 46 proteins differentially expressed, which were further identified by mass spectrometry analysis. The identified proteins can be classified into 6 classes: metabolism and mitochondrial function, synaptic transmission, cytoskeletal proteins, oxidative stress, signal transduction and protein synthesis and degradation. Importantly, we discovered 14 proteins were significantly but similarly altered after withdrawal therapy with clonidine or methadone, revealing potential pharmacological strategies or targets for the treatment of morphine addiction. Our study provides a comprehensive understanding of the neuropathophysiology associated with morphine addiction and withdrawal therapy in primate, which is helpful for the development of opiate withdrawal pharmacotherapies.  相似文献   

12.
Dizocilpine maleate (MK-801) causes the blockage of the glutamic acid (Glu) receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of MK-801 in pain-related neurons is not clear, and it is still unknown whether Glu is involved in the modulation of this processing. This study examines the effect of MK-801, Glu on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in NAc were recorded by a glass microelectrode. Our results revealed that the lateral ventricle injection of Glu increased the discharged frequency and shortened the discharged latency of PEN, and decreased the discharged frequency and prolonged the discharged inhibitory duration (ID) of PIN in NAc of rats evoked by the noxious stimulation, while intra-NAc administration of MK-801 produced the opposite response. On the basis of above findings we can deduce that Glu, MK-801 and N-methyl-d-aspartate (NMDA) receptor are involved in the modulation of nociceptive information transmission in NAc.  相似文献   

13.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

14.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

15.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:3,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

16.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   

17.
Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.  相似文献   

18.
Abstract: Systemic administration of the anxiogenic benzodiazepine inverse agonist FG 7142 has been shown to increase selectively dopamine utilization in the medial prefrontal cortex and the shell, but not core, subregion of the nucleus accumbens. In the present study, we examined the functional interaction between benzodiazepine and N -methyl- d -aspartate receptor influences on dopamine utilization in these areas. Male Sprague-Dawley rats were pretreated with the glycine receptor antagonist (+)-HA 966 (15 mg/kg, i.p.) or saline 15 min before FG 7142 (20 mg/kg, i.p.) or vehicle administration. Subjects were killed 30 min later and assayed for tissue concentrations of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid in the core and shell subdivisions of the nucleus accumbens and the medial prefrontal cortex. (+)-HA 966 administration blocked FG 7142-induced increased dopamine utilization in both the medial prefrontal cortex and the shell subdivision of the nucleus accumbens. Results are discussed in terms of N -methyl- d -aspartate receptor influences on the response of mesoaccumbal dopamine neurons to stress.  相似文献   

19.
Although the involvement of both endogenous opioid and serotonergic systems in modulation of pain and emotion was suggested, the neurochemical interaction between these systems in the brain has not previously been studied directly. Herein, the effects of the local application of serotonin (5-HT) and fluoxetine (a 5-HT reuptake inhibitor) on extracellular levels of beta-endorphin in the arcuate nucleus and nucleus accumbens were assessed in freely moving rats using in vivo microdialysis. The mean basal concentrations of beta-endorphin in dialysates obtained from the arcuate nucleus and nucleus accumbens were 259.9 and 143.3 pM, respectively. Specific lesion of the serotonergic system by 5,7-dihydroxytryptamine (5,7-DHT) caused a significant decrease in these dialysate beta-endorphin levels. When 5-HT (0.25-5 microM) was added to the perfusion solution, the levels of beta-endorphin in the dialysate from the arcuate nucleus increased (186-296% of baseline), in a concentration-dependent manner. In the nucleus accumbens, 0.5 and 2 microM 5-HT in the perfusion fluid did not affect the levels of beta-endorphin in the dialysate, whereas 5 and 10 microM 5-HT caused an increase of approximately 190% of baseline. When fluoxetine (250 microM) was present in the perfusing solution, the levels of beta-endorphin in the dialysates from the arcuate nucleus and nucleus accumbens increased two- to threefold. This effect was not obtained in the 5,7-DHT-lesioned rats. Thus, 5-HT, either endogenously or exogenously delivered, appears to facilitate the release of beta-endorphin in the arcuate nucleus and nucleus accumbens. This indication of an interaction between serotonergic and endorphinic systems may be relevant for assessing pain and mood disorder circuits and the mode of action of antidepressant drugs.  相似文献   

20.
Stressful events are accompanied by modifications in dopaminergic transmission in distinct brain regions. As the activity of the neuronal dopamine (DA) transporter (DAT) is considered to be a critical mechanism for determining the extent of DA receptor activation, we investigated whether a 3-week exposure to unavoidable stress, which produces a reduction in DA output in the nucleus accumbens shell (NAcS) and medial prefrontal cortex (mPFC), would affect DAT density and DA D1 receptor complex activity in the NAcS, mPFC and caudate-putamen (CPu). Rats exposed to unavoidable stress showed a decreased DA output in the NAcS accompanied by a decrease in the number of DAT binding sites, and an increase in the number of DA D1 binding sites and Vmax of SKF 38393-stimulated adenylyl cyclase. In the mPFC, stress exposure produced a decrease in DA output with no modification in DAT binding or in DA D1 receptor complex activity. Moreover, in the CPu stress exposure induced no changes in DA output or in the other neurochemical variables examined. This study shows that exposure to a chronic unavoidable stress that produces a decrease in DA output in frontomesolimbic areas induced several adaptive neurochemical modifications selectively in the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号