首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Interferon tau (IFNtau) is the antiluteolytic signal produced by the conceptus of ruminants. Intrauterine administration of recombinant ovine IFNtau suppresses expression of endometrial estrogen receptor (ER) and oxytocin receptor (OTR) in the luminal and superficial glandular epithelia to abrogate the production of luteolytic prostaglandin F(2alpha) (PGF(2alpha)) pulses. Subcutaneous (s.c.) injections of recombinant ovine (o) IFNtau appear to extend the interestrous interval by altering uterine PGF(2alpha) response to oxytocin. The present study tested the hypothesis that antiluteolytic effects of roIFNtau injected into the uterine lumen (paracrine) or s.c. (endocrine) are equivalent in suppressing expression of endometrial ER and OTR and inducing uterine expression of type I IFN-regulated Mx and ubiquitin cross-reactive proteins (UCRP). Sixteen cyclic ewes were fitted with uterine catheters on Day 5 (Day 0 = estrus), were assigned randomly to receive treatment with control proteins or roIFNtau (2 x 10(7) antiviral units/day) by either intrauterine or s.c. injections from Days 11 to 15, and were ovariohysterectomized on Day 16. Results indicated that expression of ER and OTR mRNAs in endometrial epithelium was suppressed by intrauterine but not by s.c. injections of roIFNtau. Intrauterine injections of roIFNtau increased expression of Mx and UCRP mRNA in the endometrium. Subcutaneous injections of roIFNtau increased endometrial Mx mRNA levels but not UCRP mRNA. Unexpectedly, intrauterine and s.c. injections of roIFNtau were equally effective in inducing expression of Mx and UCRP mRNA in the corpus luteum. Although s.c. injections of roIFNtau induced Mx mRNA in the endometrial epithelium, s.c. injections of roIFNtau did not abrogate activation of the uterine luteolytic mechanism by suppressing epithelial ER and OTR expression. Therefore, results of this study failed to support the assumption that endocrine roIFNtau mimics antiluteolytic effects of paracrine IFNtau to improve pregnancy rates in sheep.  相似文献   

2.
Progesterone modulation of osteopontin gene expression in the ovine uterus   总被引:12,自引:0,他引:12  
Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNtau) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i. u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 136.317 (ZK; progesterone receptor [PR] antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNtau did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.  相似文献   

3.
4.
Ubiquitin cross-reactive protein (UCRP) is a functional ubiquitin homolog synthesized by the ruminant endometrium in response to conceptus-derived interferon-tau (IFNtau). Progesterone is required for IFNtau to exert antiluteolytic actions on the endometrium. Therefore, this study was designed to determine whether progesterone is requisite for IFNtau induction of UCRP expression within the ovine uterus. Cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 137.316 (ZK; progesterone receptor antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. In P-treated ewes, roIFNtau increased endometrial UCRP mRNA and protein levels. However, administration of ZK to ewes ablated roIFNtau induction of UCRP. Recombinant ovine IFNtau induced expression of UCRP mRNA in progestinized endometrial luminal (LE) and glandular (GE) epithelium as well as in both stratum compactum and spongiosum layers of the stroma (ST). Progesterone receptor protein was located in endometrial ST, but not in LE and GE from these ewes. Results support the hypothesis that progesterone is required for IFNtau induction of type I IFN-responsive genes, such as UCRP, in the ruminant uterus.  相似文献   

5.
6.
The aim of this work was to compare PR, ERα and OTR uterine expression between days 9 and 21 of pregnancy in ewes whose estrus had been synchronized with two different protocols. Sixty-four adult Manchega ewes were synchronized with either conventional progestagens (P) or prostaglandin analogues (PG), and mated. Uterine samples were obtained from pregnant animals (group P, n=24; group PG, n=25) on days 9 post coitus (pc), 13pc, 15pc, 17pc and 21pc. Immunohistochemical detection of progesterone receptor (PR), estrogen receptor-α (ERα) and oxytocin receptor (OTR) was assessed in different uterine cell compartments including luminal and glandular epithelium, stroma and myometrium. Interaction day × treatment was obtained when assessing PR expression in the caruncular stroma (P=0.027) and myometrium (P=0.000), as well as for ERα in the superficial stroma (P=0.05). Significant "day post coitus" effect was found regarding to PR (P<0.01, with the exception of the superficial stroma, deep stroma and myometrium), ERα (P<0.01), and OTR (P<0.05, except in the deep compartments). No significant "treatment" effect was found for PR, ERα or OTR protein immunoexpression. This study supports the implication of PR, ERα and OTR within days 9-21 of the ovine pregnancy. Moreover, different expression pattern of PR and ERα proteins has been found between treatments in various compartments studied. Collectively, these results indicate that PR, ERα and OTR expression during early pregnancy is similar between ewes treated with either progestagens or prostaglandin analogues-based protocols for estrus synchronization.  相似文献   

7.
A hormonal servomechanism has been proposed to regulate differentiation and function of the endometrial glandular epithelium (GE) in the ovine uterus during pregnancy. This mechanism involves sequential actions of estrogen, progesterone, ovine interferon tau (IFNtau), placental lactogen (oPL), and placental growth hormone (oGH). The biological actions of oPL in vitro are mediated by homodimerization of the prolactin receptor (oPRLR) and heterodimerization of the oPRLR and oGH receptor. The objectives of the study were to determine the effects of intrauterine oPL, oGH, and their combination on endometrial histoarchitecture and gene expression and to localize and characterize binding sites for oPL in the ovine uterus in vivo using an in situ ligand binding assay. Intrauterine infusion of oPL and/or oGH following IFNtau into ovariectomized ewes treated with progesterone daily differentially affected endometrial gland number and expression of uterine milk proteins and osteopontin. However, neither hormone affected PRLR, insulin-like growth factor (IGF)-I, or IGF-II mRNA levels in the endometrium. A chimeric protein of placental secretory alkaline phosphatase (SEAP) and oPL was used to identify and characterize binding sites for oPL in frozen sections of interplacentomal endometrium from pregnant ewes. Specific binding of SEAP-oPL was detected in the endometrial GE on Days 30, 60, 90, and 120 of pregnancy. In Day 90 endometrium, SEAP-oPL binding to the endometrial GE was displaced completely by oPL and prolactin (oPRL) but only partially by oGH. Binding experiments using the extracellular domain of the oPRLR also showed that iodinated oPL binding sites could be competed for by oPRL and oPL but not by oGH. Collectively, results indicate that oPL binds to receptors in the endometrial glands and that oPRL is more effective than oGH in competing for these binding sites. Thus, effects of oPL on the endometrial glands may be mediated by receptors for oPRL and oGH.  相似文献   

8.
The enzymes which comprise the 2',5'-oligoadenylate synthetase (OAS) family are interferon (IFN) stimulated genes which regulate ribonuclease L antiviral responses and may play additional roles in control of cellular growth and differentiation. This study characterized OAS expression in the endometrium of cyclic and pregnant ewes as well as determined effects of IFNtau and progesterone on OAS expression in cyclic or ovariectomized ewes and in endometrial epithelial and stromal cell lines. In cyclic ewes, low levels of OAS protein were detected in the endometrial stroma (S) and glandular epithelium (GE). In early pregnant ewes, OAS expression increased in the S and GE on Day 15. OAS expression in the lumenal epithelium (LE) was not detected in uteri from either cyclic or pregnant ewes. Intrauterine administration of IFNtau stimulated OAS expression in the S and GE, and this effect of IFNtau was dependent on progesterone. Ovine endometrial LE, GE, and S cell lines responded to IFNtau with induction of OAS proteins. In all three cell lines, the 40/46-kDa OAS forms were induced by IFNtau, whereas the 100-kDa OAS form appeared to be constitutively expressed and not affected by IFNtau. The 69/71-kDa OAS forms were induced by IFNtau in the S and GE cell lines, but not in the LE. Collectively, these results indicate that OAS expression in the endometrial S and GE of the early pregnant ovine uterus is directly regulated by IFNtau from conceptus and requires the presence of progesterone.  相似文献   

9.
Ubiquitin cross-reactive protein (UCRP) is a 17-kDa protein that shows cross-reactivity with ubiquitin antisera and retains the carboxyl-terminal Leu-Arg-Gly-Gly amino acid sequence of ubiquitin that ligates to, and directs degradation of, cytosolic proteins. It has been reported that bovine endometrial UCRP is synthesized and secreted in response to conceptus-derived interferon-tau (IFNtau). In the present studies, UCRP mRNA and protein were detected in ovine endometrium. Ovine UCRP mRNA was detectable on Day 13, peaked at Day 15, and remained high through Day 19 of pregnancy. The UCRP mRNA was localized to the luminal epithelium (LE), stromal cells (ST) immediately beneath the LE, and shallow glandular epithelium (GE) on Day 13, but it extended to the deep GE, deep ST, and myometrium of uterine tissues by Day 15 of pregnancy. Western blotting revealed induction of UCRP in the endometrial extracts from pregnant, but not cyclic, ewes. Ovine UCRP was also detected in uterine flushings from Days 15 and 17 of pregnancy and immunoprecipitated from Day 17 pregnant endometrial explant-conditioned medium. Treatment of immortalized ovine LE cells with recombinant ovine (ro) IFNtau induced cytosolic expression of UCRP, and intrauterine injection of roIFNtau into ovariectomized cyclic ewes induced endometrial expression of UCRP mRNA. These results are the first to describe temporal and spatial alterations in the cellular localization of UCRP in the ruminant uterus. Collectively, UCRP is synthesized and secreted by the ovine endometrium in response to IFNtau during early pregnancy. Because UCRP is present in the uterus and uterine flushings, it may regulate endometrial proteins associated with establishment and maintenance of early pregnancy in ruminants.  相似文献   

10.
Major histocompatibility complex (MHC) class I molecules, consisting of an alpha chain and beta2-microglobulin (beta2MG), play an important role in immune rejection responses by discriminating self and nonself and are increased by type I interferons during antiviral responses. Interferon tau (IFNtau), the pregnancy-recognition signal in ruminants, is a type I interferon produced by the ovine conceptus between Days 11 and 21 of gestation. In study 1, expression of MHC class I alpha chain and beta2MG mRNA and protein was detected primarily in endometrial luminal epithelium (LE) and glandular epithelium (GE) on Days 10 and 12 of the estrous cycle and pregnancy. On Days 14-20 of pregnancy, MHC class I and beta2MG expression increased only in endometrial stroma and GE and, concurrently, was absent in LE and superficial ductal GE (sGE). Although neither MHC class I nor beta2MG proteins were detected in Day 20 trophectoderm, beta2MG mRNA was detected in conceptus trophectoderm. In study 2, cyclic ewes were ovariectomized on Day 5, treated daily with progesterone to Day 16, received intrauterine infusions between Days 11 and 16 of either control serum proteins or recombinant ovine IFNtau, and were hysterectomized on Day 17. The IFNtau increased MHC class I and beta2MG expression only in endometrial stroma and GE. During pregnancy, MHC class I and beta2MG gene expression is inhibited in endometrial LE and sGE but, paradoxically, is stimulated by IFNtau in the stroma and GE. The silencing of MHC class I alpha chain and beta2MG genes in the endometrial LE and sGE during pregnancy recognition and establishment may be a critical mechanism preventing immune rejection of the conceptus allograft.  相似文献   

11.
Ing NH  Zhang Y 《Theriogenology》2004,62(3-4):403-414
A single physiological dose of estradiol up-regulates estrogen receptor-alpha(ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), c-fos, cyclophilin, and actin mRNAs in the endometrium of ovariectomized ewes. Therefore, we hypothesized that these genes would be up-regulated by the preovulatory surge of estrogen which occurs on the evening of Day 15 in the estrous cycle of sheep. ER and PR mRNA concentrations increased between Day 15 and Day 1 in cyclic ewes in most endometrial epithelial cells, while GAPDH mRNA increased in epithelial and stromal cells in the deep endometrium. Day 15 pregnant ewes had lower expression of ER, PR, GAPDH, cyclophilin and actin genes. For ER and GAPDH mRNAs, the greatest reduction occurred in the superficial endometrium. Ovariectomized ewes demonstrated concentrations of ER, PR, and GAPDH mRNAs that were similar to those in the cyclic ewes. While concentrations of c-fos mRNA did not differ between groups, those of cyclophilin and actin mRNAs were lower in the pregnant and ovariectomized ewes. In conclusion, ER, PR and GAPDH gene expression rose during estrus in endometrial cells with the highest ER gene expression and were repressed in pregnant ewes in superficial endometrial cells with the greatest PR gene expression.  相似文献   

12.
Peri-implantation conceptus (embryo/fetus and associated extraembryonic membranes) growth and development are primarily regulated by secretions from the uterus. This study investigated the effects of progesterone on preimplantation conceptus development and endometrial galectin 15 (LGALS15). Ewes received daily injections of either corn oil (CO) vehicle or 25 mg progesterone (P4) from 36 h postmating to hysterectomy. Treatment with P4 increased blastocyst diameter by 220% on Day 9 and advanced time of elongation of blastocysts to a filamentous conceptus on Day 12. Effects of P4 treatment on blastocyst development were blocked by administration of RU486, a progesterone receptor antagonist. Consistent with early elongation of blastocysts, interferon tau (IFNT) protein was about 50-fold greater in uterine flushes from Day 12 in ewes receiving P4 compared with those receiving CO. Expression of cathepsin L (CTSL) and radical S-adenosyl methionine domain containing 2 (RSAD2), both IFNT-stimulated genes, was increased in endometria of Day 12 P4-treated ewes. LGALS15 mRNA, expressed only in the endometrial luminal epithelium and superficial glands, was detected between Days 9 and 12 and was more abundant in ewes receiving P4 than in those receiving CO on both Days 9 and 12. RU486 treatment ablated P4 induction of LGALS15 mRNA in the endometrial epithelia. LGALS15 protein in uterine flushings was not different on Day 9 but tended to be greater in P4-treated ewes than in those receiving CO on Day 12. The advanced development of blastocysts in P4-treated ewes is hypothesized to involve early induction of specific genes in the endometrial epithelia, such as LGALS15, and undoubtedly components of uterine histotroph.  相似文献   

13.
The effects of administration of progesterone and oestradiol on ovine endometrial oxytocin receptor concentrations and plasma concentrations of 13,14-dihydro-15-keto prostaglandin F-2 alpha (PGFM) after oxytocin treatment were determined in ovariectomized ewes. Ewes received progestagen pre-treatment, progesterone and/or oestradiol in 11 different treatment schedules. Progestagen pre-treatment decreased oxytocin receptor concentrations in endometrium from ewes treated subsequently with either progesterone for 5 days or progesterone for 5 days plus oestradiol on Days 4 and 5 of progesterone treatment. Oestradiol increased endometrial oxytocin receptor concentrations when administered on Days 4 and 5 of 5 days progesterone treatment. Progestagen pre-treatment followed by progesterone treatment for 12 days caused a large increase in oxytocin receptors and no further increase occurred when ewes were given oestradiol on Days 11 and 12, or when progesterone was withdrawn on Days 11 and 12, or these two treatments were combined. Oxytocin administration caused an increase in plasma PGFM concentrations in ewes which did not receive progestagen pre-treatment, and subsequently received progesterone treatment for 5 days and oestradiol treatment on Days 4 and 5 of progesterone treatment. Similarly treated ewes which received progestagen pre-treatment did not respond to oxytocin. Oxytocin administration also increased plasma PGFM concentrations in ewes which received progestagen pre-treatment followed by progesterone treatment for 12 days, progesterone treatment for 12 days plus oestradiol on Day 11 and 12 of progesterone treatment, progesterone withdrawal on Day 11 and 12, or progesterone withdrawal and oestradiol treatment combined. The results indicate that (1) progesterone pre-treatment affects oxytocin receptor concentrations in the endometrium and uterine responsiveness to oxytocin and (2) progesterone treatment alone for 12 days after a treatment which mimics a previous luteal phase and oestrus is sufficient to induce oxytocin receptors and increase oxytocin-induced PGF release. These results emphasize the importance of progesterone and provide information which can be used to form an hypothesis for control of luteolysis and oestrous cycle length in the ewe.  相似文献   

14.
15.
In ruminants, both the endometrium and the conceptus (embryo and associated extraembryonic membranes) trophectoderm synthesizes and secretes prostaglandins (PG) during early pregnancy. In mice and humans, PGs regulate endometrial function and conceptus implantation. In Study One, bred ewes received intrauterine infusions of vehicle as a control (CX) or meloxicam (MEL), a PG synthase (PTGS) inhibitor from Days 8-14 postmating, and the uterine lumen was flushed on Day 14 to recover conceptuses and assess their morphology. Elongating and filamentous conceptuses (12 cm to >14 cm in length) were recovered from all CX-treated ewes. In contrast, MEL-treated ewes contained mostly ovoid or tubular conceptuses. PTGS activity in the uterine endometrium and amounts of PGs were substantially lower in uterine flushings from MEL-treated ewes. Receptors for PGE2 and PGF2 alpha were present in both the conceptus and the endometrium, particularly the epithelia. In Study Two, cyclic ewes received intrauterine infusions of CX, MEL, recombinant ovine interferon tau (IFNT), or IFNT and MEL from Days 10-14 postestrus. Infusion of MEL decreased PGs in the uterine lumen and expression of a number of progesterone-induced endometrial genes, particularly IGFBP1 and HSD11B1. IFNT increased endometrial PTGS activity and the amount of PGs in the uterine lumen. Interestingly, IFNT stimulation of many genes (FGF2, ISG15, RSAD2, CST3, CTSL, GRP, LGALS15, IGFBP1, SLC2A1, SLC5A1, SLC7A2) was reduced by co-infusion with MEL. Thus, PGs are important regulators of conceptus elongation and mediators of endometrial responses to progesterone and IFNT in the ovine uterus.  相似文献   

16.
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.  相似文献   

17.
18.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

19.
Two experiments were performed to determine changes in the abundance of oestrogen and progesterone receptor (ER alpha and PR) mRNAs in equine endometrium during the oestrous cycle and early pregnancy, and under the influence of exogenous steroids. In Expt 1, endometrial biopsies were obtained from non-mated mares during oestrus and at days 5, 10 and 15 after ovulation, and from pregnant mares at days 10, 15 and 20 after ovulation. There were overall effects of day on the abundance of ER alpha (P = 0.0001) and PR (P = 0.0014) mRNAs. The amount of ER alpha mRNA decreased at day 10 of pregnancy, and PR mRNA was reduced at day 5 in non-mated mares and at day 15 of pregnancy, compared with oestrous values. Experiment 2 was conducted to determine the effects of exogenous steroids on endometrial ER alpha and PR mRNAs. Endometrial biopsies were obtained from 19 anoestrous mares that had been treated with vehicle, oestradiol, progesterone, or oestradiol followed by progesterone for either a short or a long duration. The steroid treatment affected the abundance of ER alpha mRNA (P = 0.0420), which was higher (P < 0.05) in the oestradiol group than in the group treated with oestradiol followed by long duration progesterone. The steroid treatment did not affect the abundance of PR mRNA. These results demonstrate that the amount of steroid receptor mRNA changes with the fluctuating steroid environment in the uterine endometrium of cyclic and early pregnant mares, and that the duration of progesterone dominance may affect ER alpha gene expression. In addition, factors other than steroids may regulate ER alpha and PR gene expression in equine uterine endometrium.  相似文献   

20.
Total glucose in ovine uterine lumenal fluid increases 6-fold between Days 10 and 15 of gestation, but not the estrous cycle; however, mechanisms for glucose transport into the uterine lumen and uptake by conceptuses (embryo/fetus and associated membranes) are not established. This study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on expression of both facilitative (SLC2A1, SLC2A3, and SLC2A4) and sodium-dependent (SLC5A1 and SLC5A11) glucose transporters in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy, as well as in conceptuses from Days 10 to 20 of pregnancy. The SLC2A1 and SLC5A1 mRNAs and proteins were most abundant in uterine luminal epithelia and superficial glandular epithelia (LE/sGE), whereas SLC2A4 was present in stromal cells and glandular epithelia (GE). SLC5A11 mRNA was most abundant in endometrial GE, whereas SLC2A3 mRNA was not detectable in endometria. SLC2A1, SLC2A3, SLC2A4, SLC5A1, and SLC5A11 were expressed in the trophectoderm and endoderm of conceptuses. Steady-state levels of SLC2A1, SLC5A1, and SLC5A11 mRNAs, but not SLC2A4 mRNA, were greater in endometria from pregnant than from cyclic ewes. Progesterone increased SLC2A1, SLC5A11, and SLC2A4 mRNAs in the LE/sGE and SLC5A1 in the GE of ovariectomized ewes. Expression of SLC5A1 was inhibited by ZK136,317 (progesterone receptor antagonist), and the combination of ZK136,317 and IFNT further decreased expression in GE. In constrast, P4 induced and IFNT stimulated expression of SLC2A1 and SLC5A11, and these effects were blocked by ZK136,317. Results of this study indicate differential expression of facilitative and sodium-dependent glucose transporters in ovine uteri and conceptuses for transport and uptake of glucose, and that P4 or P4 and IFNT regulate their expression during the peri-implantation period of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号