首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Regoli  F Nantel 《Biopolymers》1991,31(6):777-783
The neurokinins are a group of naturally occurring peptides with the common C-terminal sequence Phe-X-Gly-Leu-Met.NH2. They include substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). SP and NKA are coded on the same gene, the PPT-A, while NKB is coded on a separate gene, the PPT-B. Neurokinins are present in the central nervous system and in peripheral organs where they exert various actions. They act on three receptors--NK-1, NK-2, and NK-3--characterized through pharmacological, biochemical, and histochemical studies. Selective agonists for each neurokinin receptor were developed and evaluated on isolated smooth muscle preparations containing only one neurokinin receptor type. All three neurokinin receptors were cloned and expressed in Xenopus oocytes. Relative affinities of those receptors to neurokinins are the same as in their respective smooth muscle preparation. Finally, the mechanism of action of SP on histamine release from rat peritoneal mast cell has been studied and a direct activation of G proteins by peptides with basic amino acids is proposed as a working hypothesis.  相似文献   

2.
R Mathison  J S Davison 《Life sciences》1989,45(12):1057-1064
This study characterizes the actions of the neurokinins and calcitonin-gene related peptide (CGRP) on electrolyte transport across the mucosa of the guinea pig jejunum in vitro in a modified Ussing chamber. By following changes in short circuit current (Isc) induced by substance P (SP) and neurokinins A & B (NKA & NKB) in the presence and absence of tetrodotoxin (TTX) and atropine, it was established that two distinct neurokinin receptors are involved in the regulation of electrolyte transport. NKA preferentially activates a neuronal receptor since the actions of this neurokinin were inhibited by both TTX and atropine. SP, whose actions were reduced to a lesser extent by TTX and atropine, is considered to activate preferentially a receptor on the epithelial cells. The third neurokinin, NKB, appears to act non-selectively on both the neuronal and epithelial receptors. CGRP, which per se did not affect Isc, markedly potentiated the increases in Isc induced by SP and NKB, and thus acts synergistically with the epithelial neurokinin receptor. These results suggest that two distinct neurokinin receptors (the NK-1 and the NK-2) regulate epithelial transport in the jejunal mucosa of the guinea pig, and furthermore indicate that at least one of the peptides found in enteric nerves (i.e. CGRP) modulates the actions of neurokinins on epithelial cells.  相似文献   

3.
Selective agonists for receptors of substance P and related neurokinins   总被引:3,自引:0,他引:3  
Neurokinins and their receptors are a complex system consisting of at least three endogenous agents--substance P (SP), neurokinin A (NKA), and neurokinin B (NKB)--and their corresponding receptor types, respectively, NK-1, NK-2, and NK-3. Investigations on receptors have been made using sensitive and fairly selective pharmacological preparations (the dog carotid artery for the NK-1, the rabbit pulmonary artery devoid of endothelium for the NK-2, and the rat portal vein for the NK-3 receptor), and some natural peptides of mammalian and nonmammalian origin. Because of the nonselectivity of the natural peptides, analogues of the neurokinins have been found that act on one receptor only and show therefore high selectivity. The selective agonists [Sar9,Met(O2)11]SP, [Nle10]NKA (4-10), and [MePhe7]-NKB have been used successfully for (a) characterizing the three neurokinin receptors, (b) identifying isolated organs whose responses to neurokinins depend on the activation of a single (monoreceptor systems) or of more than one (multireceptor systems) receptor, and (c) elucidating some of the physiological function of the three receptor types. It is suggested that NK-1 mediate peripheral vasodilatation and exocrine secretions, NK-2 stimulate bronchial muscles and facilitate the release of catecholamines, and NK-3 promote the release of acetylcholine in peripheral organs.  相似文献   

4.
J E Shook  T F Burks 《Life sciences》1986,39(26):2533-2539
Although three neurokinin receptors (NK-1, NK-2, NK-3) have been identified by radioligand binding assays, only the NK-1 and NK-3 types have been found in smooth muscle bioassays. In this study, evidence is presented demonstrating functional NK-2 type receptors in the guinea pig gallbladder (GPGB). The potencies of the following neurokinins were determined in the GPGB and the guinea pig ileum (GPI): substance P (SP), physalaemin (PH), eledoisin (EL), substance K (SK) and kassinin (KA). ED50 values were determined by linear regression analysis of the dose-related increases in the force generated by each peptide. In the GPI, the rank order of potency was SP = PH = EL greater than SK = KA, indicating NK-1 selectivity. In the GPGB, the relative potencies were SK greater than KA greater than EL much greater than PH greater than SP, which is similar to that reported for the NK-2 receptor in radioligand binding assays. These findings demonstrate the NK-2 receptor tissue selectivity of the GPGB.  相似文献   

5.
Four neurokinin antagonists of different size have been used to counteract the myotropic effects of substance P, neurokinin A and neurokinin B in isolated organs containing a single receptor type (monoreceptor systems). These are: the dog carotid artery, the rabbit jugular and cava veins and the guinea pig ileum (NK-1), the rabbit pulmonary artery (NK-2) and the rat portal vein (NK-3). Undeca and octapeptides containing 2 D-Trp residues in their sequences were slightly more active on the NK-1, than on the NK-2 and NK-3 receptors and showed little selectivity. In contrast, compound AcThr-D.Trp(For)-Phe.NMe Bz was found to be as good an antagonist as the larger compounds and showed some selectivity for the NK-1 receptors. When tested against kinins or angiotensin, all compounds were found to be inactive, suggesting that they are specific for neurokinins. The present results show that NK-1 receptor antagonism can be obtained with compounds of different size, including tripeptides and nonpeptides.  相似文献   

6.
Molecular mechanism of opioid receptor selection   总被引:10,自引:0,他引:10  
R Schwyzer 《Biochemistry》1986,25(20):6335-6342
Preferred conformations, orientations, and accumulations of 26 opioid peptides on lipid membranes were estimated and compared with pharmacologic and selective binding data taken from the literature. Interaction with mu-receptors was governed by the net positive charge effective at the message domain of the agonist peptides z(eff) as the Boltzmann term ez(eff) that determines relative accumulation on anionic biologic membranes. Selection for delta-receptors was reduced by z(eff) and correlated with e-z(eff). Selection for kappa-receptors was governed by the peptide amphiphilic moment A. A pronounced scalar magnitude A and almost perpendicular orientation of the N-terminal message domain as an alpha-helix were favorable for kappa-site selection. Potencies as kappa-agonists and binding affinities correlated with A X ez(eff). The classical site selectivity caused by the receptor requirements for a complementary fit of the agonist to the discriminator site is thus crucially supplemented by a selection mechanism based on peptide membrane interactions (membrane requirements). In the model presented here, the delta-site is exposed to the aqueous compartment surrounding the target cell at a distance comparable to or greater than the Debye-Hückel length and is in a cationic vicinity. The mu-site is exposed to the anionic fixed-charge compartment of the membrane in aqueous surroundings. The kappa-site is buried in a more hydrophobic membrane compartment close to the fixed-charge compartment. The relative accumulation of the opioid message domains in these compartments is determined by the address domains and constitutes a major part of the site selection mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
N Frossard  C Advenier 《Life sciences》1991,49(26):1941-1953
The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.  相似文献   

8.
The tachykinins comprise a family of closely related peptides that participate in the regulation of diverse biological processes. The tachykinin peptides substance P, neurokinin A, neurokinin A(3-10), neuropeptide K, and neuropeptide gamma are produced from a single preprotachykinin gene as a result of differential RNA splicing and differential posttranslational processing. Another tachykinin, neurokinin B, is produced from a separate preprotachykinin gene. These preprotachykinin mRNAs and peptide products are differentially distributed throughout the nervous system. Three distinct G protein-coupled tachykinin receptors exist for these tachykinin peptides. The three receptors interact differentially with the tachykinin peptides and are uniquely distributed throughout the nervous system. The NK-1 receptor preferentially interacts with substance P, the NK-2 receptor prefers neurokinin A, neuropeptide K, and neuropeptide gamma, and the NK-3 receptor interacts best with neurokinin B. Examples of the roles of tachykinin peptidergic neuronal systems are taken from the spinal cord sensory system and the nigrostriatal extrapyramidal motor system. Analysis of the functional significance of multiple tachykinin peptide systems, receptor-second messenger coupling mechanisms, and developmental and regulatory mechanisms underlying peptide mRNA and receptor expression represent areas of current and future investigation.  相似文献   

9.
The reaction of regulatory peptides with their membrane-bound receptors often occurs via a membrane-associated state of the peptide. From infrared studies on thin lipid films, we have shown that several ligands of the opioid kappa receptor and the neurokinin NK-1 receptor insert their message segments as an alpha-helix, more or less perpendicularly, into the membrane. The binding parameters for these membrane-associated states were determined from the capacitance minimization potential of lipid bilayers. A theory has been developed to account for the observed binding constants and the preferred conformation and orientation of these peptides. In contrast to the kappa and NK-1 receptors, ligands of the opioid mu and delta, and the neurokinin NK-2 and NK-3 receptors, are predicted not to form the inserted alpha-helical structure. A selection between the mu and delta (or NK-2 and NK-3) receptors appears to be made on the basis of an electrostatic gradient near the membrane surface. The molecular mechanism of receptor selection thus appears to be based to a large extent on the membrane-induced compartmentalization of ligands for the different receptors.  相似文献   

10.
The precise nature of neurokin receptor involvement in human immune cell chemotaxis is unclear. This study therefore sought to directly compare the chemotactic effects of neurokinins on human T lymphocytes and monocytes. Substance P was found to have a similar dose-dependent chemotactic action on T lymphocyte and monocyte populations. In contrast, T lymphocytes were found to be more responsive than monocytes both to the highly selective NK-1 agonist, [Sar(9)Met O(2)(11)]-substance P, and also to the NK-2 selective agonist, beta-alanine neurokinin A((4-10)). Consistent with these findings, substance P-induced chemotaxis of both T lymphocyte and monocytes was attenuated by the selective NK-1 antagonist LY303870. However, the selective NK-2 antagonist MEN 10,376 was only effective in inhibiting the T lymphocyte response. The study confirms that neurokinins have chemotactic actions on immune cells and indicates important functional differences between human T lymphocyte and monocyte responses. This provides a potential mechanism by which the nervous system can selectively influence cellular recruitment in inflammatory disease.  相似文献   

11.
Two nonstoichiometric ligand binding sites have been previously reported for the NK-1 receptor, with the use of classical methods (radioligand binding and second messenger assays). The most populated (major, NK-1M) binding site binds substance P (SP) and is related to the adenylyl cyclase pathway. The less populated (minor, NK-1m) binding site binds substance P, C-terminal hexa- and heptapeptide analogues of SP, and the NK-2 endogenous ligand, neurokinin A, and is coupled to the phospholipase C pathway. Here, we have examined these two binding sites with plasmon-waveguide resonance (PWR) spectroscopy that allows the thermodynamics and kinetics of ligand-receptor binding processes and the accompanying structural changes of the receptor to be monitored, through measurements of the anisotropic optical properties of lipid bilayers into which the receptor is incorporated. The binding of the three peptides, substance P, neurokinin A, and propionyl[Met(O(2))(11)]SP(7-11), to the partially purified NK-1 receptor has been analyzed by this method. Substance P and neurokinin A bind to the reconstituted receptor in a biphasic manner with two affinities (K(d1) = 0.14 +/- 0.02 nM and K(d2) = 1.4 +/- 0.18 nM, and K(d1) = 5.5 +/- 0.7 nM and K(d2) = 620 +/- 117 nM, respectively), whereas only one binding affinity (K(d) = 5.5 +/- 0.4 nM) could be observed for propionyl[Met(O(2))(11)]SP(7-11). Moreover, binding experiments in which one ligand was added after another one has been bound to the receptor have shown that the binding of these ligands to each binding site was unaffected by the fact that the other site was already occupied. These data strongly suggest that these two binding sites are independent and non-interconvertible on the time scale of these experiments (1-2 h).  相似文献   

12.
The complete amino acid sequence of the human neurokinin-3 receptor was deduced by DNA sequence analysis of human genomic fragments. Comparison of the predicted primary structure with those for the human neurokinin receptors 1 and 2 shows a highly conserved pattern of seven hydrophobic regions with maximum divergence occurring at the amino- and carboxy-termini. The position of intron-exon junctions are identical to those in other reported neurokinin genes. Using a chimeric genomic-cDNA gene, the human NK-3 receptor was expressed in Xenopus laevis oocytes where it mediates membrane conductance changes in response to its agonist, neurokinin B. More significantly, expression of the gene in mammalian cells resulted in detection of receptor binding as well as neurokinin-stimulated calcium mobilization and arachidonic acid release, all displaying the pharmacological characteristics expected of a neurokinin-3 receptor. By using the polymerase chain reaction we have shown that mRNA for the human neurokinin-3 receptor is expressed predominantly in the central nervous system.  相似文献   

13.
Pharmacological receptors for substance P and neurokinins   总被引:31,自引:0,他引:31  
The three neurokinins identified in mammals, substance P, neurokinin A and neurokinin B, as well as their C-terminal biologically active fragments, have been used to characterize the responses of a variety of isolated organs. Three preparations selective either for substance P (the dog carotid artery), or for neurokinin A (the rabbit pulmonary artery) or for neurokinin B (the rat portal vein) are described. A neurokinin receptor classification is attempted using the neurokinins and their fragments to determine the order of potency of agonists. Three receptor subtypes have been identified: the NK-P, on which substance P (SP) is more active than neurokinin A (NKA) and neurokinin B (NKB), and the neurokinins are more active than their respective fragments; the NK-A on which NKA greater than NKB greater than SP, and some NKA fragments are more discriminative than their precursor; the NK-B on which NKB greater than NKA greater than SP, and fragments of NKB are less active than their precursor. Among the peptides studied, some potent compounds have been identified that could provide selective receptor ligands.  相似文献   

14.
The mechanism by which peptides bind to micelles is believed to be a two-phase process, involving (i). initial electrostatic interactions between the peptide and micelle surface, followed by (ii). hydrophobic interactions between peptide side chains and the micelle core. To better characterize the electrostatic portion of this process, a series of pulse field gradient nuclear magnetic resonance (PFG-NMR) spectroscopic experiments were conducted on a group of neuropeptides with varying net cationic charges (+1 to +3) and charge location to determine both their diffusion coefficients and partition coefficients when in the presence of detergent micelles. Two types of micelles were chosen for the study, namely anionic sodium dodecylsulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles. Results obtained from this investigation indicate that in the case of the anionic SDS micelles, peptides with a larger net positive charge bind to a greater extent than those with a lesser net positive charge (bradykinin > substance P > neurokinin A > Met-enkephalin). In contrast, when in the presence of zwitterionic DPC micelles, the degree of mixed-charge nature of the peptide affects binding (neurokinin A > substance P > Met-enkephalin > bradykinin). Partition coefficients between the peptides and the micelles follow similar trends for both micelle types. Diffusion coefficients for the peptides in SDS micelles, when ranked from largest to smallest, follow a trend where increasing net positive charge results in the smallest diffusion coefficient: Met-enkephalin > neurokinin A > bradykinin > substance P. Diffusion coefficients when in the presence of DPC micelles, when ranked from largest to smallest, follow a trend where the presence of negatively-charged side chains results in the smallest diffusion coefficient: bradykinin > Met-enkephalin > substance P > neurokinin A.  相似文献   

15.
Abstract: Chinese hamster ovary cells expressing the N -glycosylated substance P (NK-1) receptor were treated with the glycosylation inhibitor tunicamycin and photolabeled with 125I-Bolton-Hunter- p -benzoyl- l -phenylalanine8-substance P. Two radioactive proteins of Mr 80,000 and 46,000, representing the glycosylated and nonglycosylated substance P (NK-1) receptor, respectively, were observed. The IC50 for the inhibition of photolabeling of both receptor forms was 0.3 ± 0.1 n M for substance P and 30 ± 5 n M for neurokinin A (substance K). Thus, glycosylation of the substance P (NK-1) receptor has no detectable effect on the affinity of the substance P (NK-1) receptor for substance P or neurokinin A (substance K).  相似文献   

16.
In urethane-anaesthetized rats, the intrathecal administration of 6.5 nmol of substance P (SP), neurokinin A (NKA), or neurokinin B (NKB) at the T8-T10 level of the spinal cord enhances mean arterial pressure and heart rate. However, in the pentobarbital-anaesthetized rat, while NKB produces no effect on mean arterial pressure, NKA produces a biphasic change and SP, a depressor response. All three neurokinins elicit a tachycardia. The following rank order of potency SP greater than or equal to NKA greater than NKB is observed in relation to these cardiovascular responses when either one of the two anaesthetics is used. The low cardiovascular activity of NKB cannot be attributed to its hydrophobicity, as the water soluble analogue of NKB, [Arg0]NKB, elicits a response as weak as the native peptide. In pentobarbital-anaesthetized rats, the intrathecal administration of 6.5 nmol of SP, also enhances plasma protein extravasation in cutaneous tissues of the back, the hind paws, and the ears. In this response NKA and NKB are either inactive (skin of hind paws) or less potent than SP (ears and dorsal skin). These findings agree with the hypothesis that in the rat spinal cord, the neurokinin receptor producing changes in mean arterial pressure, heart rate, and vascular permeability is of the NK-1 subtype.  相似文献   

17.
Although neurokinin A (NKA), a tachykinin peptide with sequence homology to substance P (SP), is a weak competitor of radiolabeled SP binding to the NK-1 receptor (NK-1R), more recent direct binding studies using radiolabeled NKA have demonstrated an unexpected high-affinity interaction with this receptor. To document the site of interaction between NKA and the NK-1R, we have used a photoreactive analogue of NKA containing p-benzoyl-L-phenylalanine (Bpa) substituted in position 7 of the peptide. Peptide mapping studies of the receptor photolabeled by (125)I-iodohistidyl(1)-Bpa(7)NKA have established that the site of photoinsertion is located within a segment of the receptor extending from residues 178 to 190 (VVCMIEWPEHPNR). We have previously shown that (125)I-BH-Bpa(8)SP, a photoreactive analogue of SP, covalently attaches to M(181) within this same receptor sequence. Importantly, both of these peptides ((125)I-iodohistidyl(1)-Bpa(7)NKA and (125)I-BH-Bpa(8)SP) have the photoreactive amino acid in an equivalent position within the conserved tachykinin carboxyl-terminal tail. In this report, we also show that site-directed mutagenesis of M(181) to A(181) in the NK-1R results in a complete loss of photolabeling of both peptides to this receptor site, indicating that the equivalent position of SP and NKA, when bound to the NK-1R, contact the same residue.  相似文献   

18.
I Iwamoto  J A Nadel 《Life sciences》1989,44(16):1089-1095
To determine the tachykinin receptor subtype that mediates the increase in vascular permeability, we examined the rank order of potency of tachykinins for inducing plasma extravasation in guinea pig skin and the specificity of tachykinin-induced tachyphylaxis of the responses. Plasma extravasation of the skin induced by tachykinins was NK-1 (SP-P)-type response from the rank order of potency of mammalian and nonmammalian tachykinins. Tachyphylaxis of the vascular response was induced by intradermal preinjection of mammalian tachykinins and was tachykinin-specific. In substance P (SP) tachyphylaxis (where SP was preinjected), the response to SP, not to neurokinin A (NKA) or neurokinin B (NKB), was decreased. In NKA tachyphylaxis and NKB tachyphylaxis, the response to NKA, not to SP or NKB, and the response to NKB, not to SP or NKA, were decreased, respectively. Thus, we conclude that the apparent NK-1-type response is mediated through three mammalian tachykinin receptors, NK-1, NK-2, and NK-3, which are specifically stimulated by their preferred agonist, SP, NKA, and NKB, respectively.  相似文献   

19.
It has recently been shown that the adrenal gland of the frog Rana ridibunda is densely innervated by a network of fibers containing two novel tachykinins, i.e. ranakinin (the counterpart of substance P) and [Leu3, Ile7]neurokinin A. Both ranakinin and [Leu3, Ile7]neurokinin A stimulate corticosteroid secretion from frog adrenal glands in vitro. In the present study, we have investigated the pharmacological profile of the receptors involved in the stimulatory action of ranakinin on perifused frog adrenal slices. The selective NK-1 receptor antagonists [ -Pro4, -Trp7,9]substance P 4–11 and CP-96,345, did not affect the stimulatory action of ranakinin. The selective NK-1 agonist substance P 6–11 had no effect on corticosteroid secretion. The non-peptidic NK-1 receptor antagonist RP 67580 significantly reduced the stimulatory effect of ranakinin on corticosterone and aldosterone secretion by 57 and 55%, respectively. In addition, the dual NK-1/NK-2 receptor antagonist FK-224 significantly inhibited the effect of ranakinin on corticosterone (−80%) and aldosterone secretion (−95%). Finally, the amphiphilic analogue of substance P, [ -Pro2, -Phe7, -Trp9]substance P, had no effect on corticosteroid secretion. These data suggest that in the frog adrenal gland the stimulatory action of ranakinin on steroid secretion is mediated by a novel type of receptor which differs substantially from the mammalian NK-1 receptor subtype.  相似文献   

20.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号