首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Ribosomal DNA comprises a considerable part of a plant genome and is organized in tandemly arranged repeats composed of conservative coding sequences for ribosomal RNA and rapidly evolving spacer elements. We determined the nucleotide sequences of intergenic spacer regions (IGS) for five species from Solanacaea family: Solanum tuberosum, Atropa belladonna, Nicotiana tabacum, N. tomentosiformis, and N. sylvestris. The detailed comparative analysis of these and some other rDNA sequences allowed us to reveal the general regularities of evolution and functional organization of the rDNA spacer region and to clarify better phylogenetic relationships between the species within Solanacea family. A large body of experimental data on the application of rDNA in plant breeding, taxonomical studies and biotechnology are provided and discussed.  相似文献   

9.
10.
Plants synthesize various hormones in response to environmental cues and developmental signals to ensure their proper growth and development.Elucidation of the molecular mechanisms by which plant hormones control growth and development contributes to our understanding of fundamental plant biology and provides tools to improve crops.Because of their critical roles in plant growth and development, plant hormones have been studied extensively since the early days of plant biology.  相似文献   

11.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

12.

Book Review

Plant membranes: Structure, assembly and functionJ.L. Harwood and T.J. Walton (Eds.), London: The Biochemical Society, 1988, 251 pages. £25. ISBN 0-904498-23-9  相似文献   

13.
14.
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.  相似文献   

15.
16.
Plant Pathogen Forensics: Capabilities, Needs, and Recommendations   总被引:2,自引:0,他引:2       下载免费PDF全文
A biological attack on U.S. crops, rangelands, or forests could reduce yield and quality, erode consumer confidence, affect economic health and the environment, and possibly impact human nutrition and international relations. Preparedness for a crop bioterror event requires a strong national security plan that includes steps for microbial forensics and criminal attribution. However, U.S. crop producers, consultants, and agricultural scientists have traditionally focused primarily on strategies for prevention and management of diseases introduced naturally or unintentionally rather than on responding appropriately to an intentional pathogen introduction. We assess currently available information, technologies, and resources that were developed originally to ensure plant health but also could be utilized for postintroduction plant pathogen forensics. Recommendations for prioritization of efforts and resource expenditures needed to enhance our plant pathogen forensics capabilities are presented.  相似文献   

17.
XE-1019 [(E)-1-(4-chlorophenyl)-4,4,-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol] was injected into bean plants (Phaseolus vulgaris L. Black Valentine) at doses of 0.1–1000 g/plant and caused reduced height growth, fresh weight, and leaf area 7 days after treatment. The sprout growth of California privet (Ligustrium ovalifolium Hassk.) was inhibited 52% by 10 g and growth was further suppressed as the dose was increased to 100 g, without injury. The shoot growth of American sycamore (Platanus occidentalis L.) and yellow-poplar (Liriodendron tulipifera L.) was progressively inhibited after 3 months as the injected dose of XE-1019 was increased from 2.5 to 240 mg/tree. Neither species was injured. Growth of 1-year-old trees of Golden Delicious apple (Malus domestica Borkh) was inhibited 28 days after injecting the stem with 2 mg of14C-labeled XE-1019. At this time, 2% of14C activity has been translocated into the new shoots and 3% was present in the xylem and phloem of the scion. From 96 to 99% of14C-activity found in the xylem and phloem and 92% in the new shoot tissue chromatographed with XE-1019. This indicates that little degradation of XE-1019 occurred during the initial inhibition period.  相似文献   

18.
Plant lectins: occurrence,biochemistry, functions and applications   总被引:17,自引:0,他引:17  
Growing insights into the many roles of glycoconjugates in biorecognition as ligands for lectins indicates a need to compare plant and animal lectins. Furthermore, the popularity of plant lectins as laboratory tools for glycan detection and characterization is an incentive to start this review with a brief introduction to landmarks in the history of lectinology. Based on carbohydrate recognition by lectins, initially described for concanavalin A in 1936, the chemical nature of the ABH-blood group system was unraveled, which was a key factor in introducing the term lectin in 1954. How these versatile probes are produced in plants and how they are swiftly and efficiently purified are outlined, and insights into the diversity of plant lectin structures are also given. The current status of understanding their functions calls for dividing them into external activities, such as harmful effects on aggressors, and internal roles, for example in the transport and assembly of appropriate ligands, or in the targeting of enzymatic activities. As stated above, attention is given to intriguing parallels in structural/functional aspects of plant and animal lectins as well as to explaining caveats and concerns regarding their application in crop protection or in tumor therapy by immunomodulation. Integrating the research from these two lectin superfamilies, the concepts are discussed on the role of information-bearing glycan epitopes and functional consequences of lectin binding as translation of the sugar code (functional glycomics).  相似文献   

19.
20.
Potatoes, members of the Solanaceae plant family, serve as a major, inexpensive food source for both energy (starch) and good-quality protein, with worldwide production of about 350 million tons per year. U.S. per capita consumption of potatoes is about 61 kg/year. Potatoes also produce potentially toxic glycoalkaloids, both during growth and after harvest. Glycoalkaloids appear to be more toxic to man than to other animals. The toxicity may be due to anticholinesterase activity of the glycoalkaloids on the central nervous system and to disruptions of cell membranes affecting the digestive system and other organs. The possible contribution of glycoalkaloids to the multifactorial aspects of teratogenicity is inconclusive. Possible safe levels are controversial; guidelines limiting glycoalkaloid content of potato cultivars are currently being debated. This review presents an integrated, critical assessment of the multifaceted aspects of the role glycoalkaloids play in nutrition and food safety; chemistry and analysis; plant physiology, including biosynthesis, distribution, inheritance, host-plant resistance, and molecular biology; preharvest conditions such as soil composition and climate; and postharvest events such as effects of light, temperature, storage time, humidity, mechanical injury, sprouting inhibition, and processing. Further research needs are suggested for each of these categories in order to minimize pre- and postharvest glycoalkaloid synthesis. The overlapping aspects are discussed in terms of general concepts for a better understanding of the impact of glycoalkaloids in plants and in the human diet. Such an understanding can lead to the development of potato varieties with a low content of undesirable compounds and will further promote the utilization of potatoes as a premier food source for animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号