首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two enzymes that catalyze the hydrolysis of l-asparagine have been isolated from extracts of Pseudomonas geniculata. After initial salt fractionation, the enzymes were separated by chromatography on diethylaminoethyl-Sephadex and purified to homogeneity by gel filtration, ion-exchange chromatography, and preparative polyacrylamide electrophoresis. The enzymes differ markedly in physicochemical properties. One enzyme, termed asparaginase A, has a molecular weight of approximately 96,000 whereas the other, termed asparaginase AG, has a molecular weight of approximately 135,000. Both enzymes are tetrameric. The asparaginase A shows activity only with l-asparagine as substrate, whereas the asparaginase AG hydrolyzes l-asparagine and l-glutamine at approximately equal rates and it is also active with d-asparagine and d-glutamine as substrates. The asparaginase A was found to be devoid of antitumor activity in mice, whereas the asparaginase AG was effective in increasing the mean survival times of both C3H mice carrying the asparagine-requiring Gardner 6C3HED tumor line and Swiss mice bearing the glutamine-requiring Ehrlich ascites tumor line. These differences in antitumor activity were related to differences in the K(m) values for l-asparagine for the two enzymes. The asparaginase A has a K(m) value of 1 x 10(-3) M for this substrate whereas the corresponding value for the AG enzyme is 1.5 x 10(-5) M. Thus the concentration of asparagine necessary for maximal activity of the asparaginase A is very high compared with that of the normal plasma level of asparagine, which is approximately 50 muM.  相似文献   

2.
l-Alanine initiates the germination of spores of Bacillus subtilis by entering two metabolic pathways. The products of one pathway, which is inhibited by d-alanine or by elevated temperature, can also be derived from a combination of fructose, glucose, and K(+). The present study demonstrated that the products of the other pathway can be derived from l-asparagine or l-glutamine or, to a lesser extent, from several other amino acids. Hence, the combination of l-asparagine (or l-glutamine), fructose, glucose, and K(+) can initiate spore germination in the absence of l-alanine. Spores preincubated in a combination of asparagine and fructose do not lose refractility, optical density, or heat resistance, and do not take up methylene blue stain. The spores do, however, undergo some reaction which prepares them for a more rapid response to the later addition of glucose and K(+). This preincubation reaction has an optimal temperature of about 44 C.  相似文献   

3.
Bacterial l-asparaginases are amidohydrolases that catalyse the conversion of l-asparagine to l-aspartate and ammonia and are used as anti-cancer drugs. The current members of this class of drugs have several toxic side effects mainly due to their associated glutaminase activity. In the present study, we report the molecular cloning, biochemical characterisation and in vitro cytotoxicity of a novel l-asparaginase from the pathogenic strain Helicobacter pylori CCUG 17874. The recombinant enzyme showed a strong preference for l-asparagine over l-glutamine and, in contrast to most l-asparaginases, it exhibited a sigmoidal behaviour towards l-glutamine. The enzyme preserved full activity after 2 h incubation at 45 °C. In vitro cytotoxicity assays revealed that different cell lines displayed a variable sensitivity towards the enzyme, AGS and MKN28 gastric epithelial cells being the most affected. These findings may be relevant both for the interpretation of the mechanisms underlying H. pylori associated diseases and for biomedical applications.  相似文献   

4.
Glutaminase is an enzyme that catalyzes the hydrolysis of l-glutamine to l-glutamate, and it plays an important role in the production of fermented foods by enhancing the umami taste. By using the genome sequence and expressed sequence tag data available for Aspergillus oryzae RIB40, we cloned a novel glutaminase gene (AsgahA) from Aspergillus sojae, which was similar to a previously described gene encoding a salt-tolerant, thermostable glutaminase of Cryptococcus nodaensis (CnGahA). The structural gene was 1,929 bp in length without introns and encoded a glutaminase, AsGahA, which shared 36% identity with CnGahA. The introduction of multiple copies of AsgahA into A. oryzae RIB40 resulted in the overexpression of glutaminase activity. AsGahA was subsequently purified from the overexpressing transformant and characterized. While AsGahA was located at the cell surface in submerged culture, it was secreted extracellularly in solid-state culture. The molecular mass of AsGahA was estimated to be 67 kDa and 135 kDa by SDS-PAGE and gel filtration chromatography, respectively, indicating that the native form of AsGahA was a dimer. The optimal pH of the enzyme was 9.5, and its optimal temperature was 50°C in sodium phosphate buffer (pH 7.0). Analysis of substrate specificity revealed that AsGahA deamidated not only free l-glutamine and l-asparagine but also C-terminal glutaminyl or asparaginyl residues in peptides. Collectively, our results indicate that AsGahA is a novel peptidoglutaminase-asparaginase. Moreover, this is the first report to describe the gene cloning and purification of a peptidoglutaminase-asparaginase.  相似文献   

5.
l-Asparagine synthetase was partially purified from mouse pancreas to a final mean specific activity of 0.10 unit/mg of protein. The enzyme exhibited an l-glutaminase activity which was not affected by l-asparate, NH(4)Cl, ATP-MgCl(2), l-glutamate, AMP (sodium salt) or sodium pyrophosphate. The l-glutamine-dependent l-asparagine synthetase activity of the partially purified enzyme from mouse pancreas was markedly decreased by freezing for 7 days at -87 degrees C in the presence of 1mm-dithiothreitol, but effectively protected from inactivation by high concentrations (10mm) of the thiol reagent. The l-glutaminase activity of the enzyme was inhibited by antagonists of l-glutamine (e.g. 6-diazo-5-oxo-l-norleucine, 5-chloro-4-oxo-l-norvaline, 5-diazo-4-oxo-l-norvaline and NSC-163501) and thiol-reactive compounds (e.g. 2-amino-4-arsenophenol hydrochloride, maleimide, mucochloric acid and ZnCl(2)), but not by aminomalonic acid, the next lower homologue of l-aspartate, nor by l-homoserine beta-adenylate, an analogue of the presumed transitory covalent intermediate. The complete forward reaction catalysed by l-asparagine synthetase from mouse pancreas appears to be irreversible and essentially stoicheiometric under the conditions examined. Mouse pancreas contains a proteolytic inhibitor of l-asparagine synthetase separable from the enzyme by ion-exchange column chromatography. The inhibitor is activated by incubation at 4 degrees C for 110h and inactivated by soya-bean trypsin inhibitor, di-isopropyl phosphorofluoridate and boiling.  相似文献   

6.
  • 1.1. As previously shown, 14 mM d-glucose, a non-insulinotropic concentration in isolated chicken pancreas, permits an insulin release in response to d-glyceraldehyde, (d-GA; a glycolytic fuel) and l-leucine or α-ketoisocaproic acid (α-KIC) (non-glycolytic fuels), which alone are not initiators of insulin release in this species.
  • 2.2. The “permissive” effect of d-glucose was also observed in the presence of d-mannose (which, as shown herein, is not insulinotropic alone).
  • 3.3. The specificity of glucose for this “permissive” effect was, therefore, subsequently questioned in the presence of 10mM α-KIC by substituting various glycolytic and non-glycolytic fuels to glucose.
  • 4.4. d-GA (at 5 and 15mM), d-mannose (30 and 50 mM), or the association of l-glutamine + l-asparagine permitted an insulin release in response to α-KIC.
  • 5.5. The response was, however, delayed with d-GA, only occasionally with 50 mM d-mannose, and required high concentrations and was delayed in the presence of l-glutamine + l-asparagine as compared to that obtained with 14mM d-glucose + α-KIC.
  • 6.6. In conclusion, the threshold of fuel-induced insulin release is much higher in the chicken than in mammals and this threshold is most efficiently lowered by glucose.
  相似文献   

7.
1. Carbamoyl phosphate synthetase was purified up to 45-fold from Alaska pea seedling (Pisum sativum L. cultivar Alaska). 2. The enzyme was most active with and had the lowest K(m) for l-glutamine as compared with NH(4) (+). 3. The purest preparations utilized very poorly or not at all l-asparagine and urea as nitrogen donors. 4. At saturating concentrations of components of the reaction, the K(m) for l-glutamine was 1.2x10(-4)m, and the K(m) for ATP was approx. 3.9x10(-4)m. 5. Although the enzyme was very labile, stability was improved by glutamine, asparagine, ammonium sulphate, dithiothreitol and especially l-ornithine. 6. Free ATP was markedly inhibitory, and MgATP(2-) and Mg(2+) appeared to be the actual substrates utilized. 7. Fe(2+) and Mn(2+) were also utilized, but not as readily as Mg(2+) except at low concentrations. K(+) increased activity significantly. 8. Of the four nucleotides tested (ITP, ATP, GTP and UTP) only ATP served as an effective phosphate donor.  相似文献   

8.
In this study, the overall stability constants of copper(II) complexes with some alpha-amino acids (glycine, dl-alanine, dl-valine, l-leucine, l-asparagine, l-glutamine) were determined by potentiometric titration in water, 25% dioxan-75% water, 35% dioxan-65% water, 50% dioxan-50% water, and 60% dioxan-40% water. The titrations were performed at 25 degrees C, under nitrogen atmosphere, and the ionic strength of the medium was maintained at 0.10 M by using sodium perchlorate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The mol ratio of copper(II) to alpha-amino acid was also determined and it was found that the complexes were CuL(2) type. Another important result obtained was that the tendency of amino acids to form complexes with copper(II) was greater in dioxan-water mixtures compared to water.  相似文献   

9.
Nonomuraea sp. ATCC 39727 is an aerobic actinomycete, industrially important as a producer of the glycopeptide A40926, which is used as a precursor of the semi-synthetic antibiotic dalbavancin. Previous studies showed that the production of A40926 is depressed by calcium, but promoted by l-glutamine or l-asparagine. In this study, the protein expression changes of Nonomuraea sp. ATCC 39727 in these two different growth and antibiotic-production conditions have been investigated by two-dimensional electrophoresis and mass spectrometry (MS) analysis. Few protein spots show statistically significant expression changes, and, among this group of proteins, malate dehydrogenase (MDH) shows a significant decrease in the overproduction condition. The decrease of MDH is of particular interest because it is the first described significant change in the expression levels of enzymes of the central metabolism related with A40926 overproduction.  相似文献   

10.
An impurity, present in some samples of l-asparagine, gave genistein on acid hydrolysis. The contaminant (probably the glucoside of genistein) was metabolized by Mycobacterium phlei to genistein and prunetin.  相似文献   

11.
《Process Biochemistry》2010,45(2):223-229
Bacterial l-asparaginase has been widely used as therapeutic agent in the treatment of various lymphoblastic leukemia diseases. Studies on localization and production of novel glutaminase-free l-asparaginase were performed using Pectobacterium carotovorum MTCC 1428. The localization of l-asparaginase was carried out using cell fractionation techniques. The activity of l-asparaginase was found to be 85 and 77% in the cytoplasm of P. carotovorum MTCC 1428 grown on medium containing l-asparagine and combination of l-asparagine and glucose respectively. Among the tested carbon sources, l-asparagine or the combination of l-asparagine and glucose was found to be the most suitable carbon sources to maximize the production of l-asparaginase. The maximum production of l-asparaginase was observed to be 14.56 U/ml (26.92 U/mg of protein) at 4 and 2 g/l of l-asparagine and glucose respectively. Yeast extract, l-asparagine and peptone have shown significant effect on the production of l-asparaginase. P. carotovorum MTCC 1428 has assimilated l-asparagine as an essential carbon source for maximizing the production of l-asparaginase.  相似文献   

12.
The specific activities of two glutamate dehydrogenases (GDH), one requiring nicotinamide adenine dinucleotide (NAD) and the other specific for nicotinamide adenine dinucleotide phosphate (NADP), varied during growth of Schizophyllum commune as a function of the stage of the life cycle and the exogenous nitrogen source. During basidiospore germination on either glucose-NH(3) or glucose-glutamate medium, NADP-GDH increased six- to eightfold in specific activity, whereas NAD-GDH was depressed. During dikaryotic mycelial growth on either nitrogen source, the two GDH increased in a 1:1 ratio, whereas, during homokaryotic mycelial growth on glucose-NH(3), NADP-GDH activity was depressed and NAD-GDH increased six- to eightfold. Homokaryotic mycelium cultured on glucose-glutamate medium yielded high NADP-GDH activities and normal NAD-GDH activities. Intracellular NH(3) concentration and NADP-GDH activities were inversely related during spore germination and homokaryotic mycelium growth, whereas guanosine-5'-triphosphate (GTP) and l-glutamine specifically inhibited NAD- and NADP-GDH respectively in vitro. GTP inhibition was shown in extracts from cells at all stages of the life cycle. Basidiospore germling extracts contained an NADP-GDH essentially resistant to l-glutamine inhibition.  相似文献   

13.
l-Glutamine requirement for viral maturation was found in BHK-HVJ cells, a cell line of baby hamster kidney cells persistently infected with HVJ (Sendai virus). Synthesis of envelope protein in BHK-HVJ cells was markedly suppressed by deprivation of l-glutamine, whereas development of nucleocapsid (S) antigen was less affected. More detailed examination of this phenomenon was carried out by using a cytolytic system. Growth of HVJ in BHK cells cultured in media deprived of various amino acids was investigated, and omission of l-glutamine from culture medium resulted in a marked inhibitory effect on the release of infectious virus and synthesis of envelope protein, although synthesis of virus-specific RNA and nucleocapsid antigen in the cells was readily detected. When l-glutamine was restored to the culture medium, infectious virus and envelope protein could be detected. l-Glutamic acid, l-aspartic acid, or l-alanine could be substituted for l-glutamine. Effects of l-glutamine deprivation on HVJ growth in several other cells were also investigated. The growth of HVJ in the cells other than BHK and FL cells was not suppressed by lack of l-glutamine. Growth of Sindbis virus in BHK cells was also markedly retarded in the absence of l-glutamine.  相似文献   

14.
l-Asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydrolysis of l-asparagine to l-aspartic acid and ammonia. It can be used to reduce the formation of acrylamide, which is carcinogenic to humans in foods, via removal of the precursor, asparagine, from the primary ingredients. However, low activity and poor thermostability of l-asparaginase restrict its application in food industry. In this study, we successfully improved thermostability and catalytic efficiency of l-asparaginase II (BsAII) from Bacillus subtilis B11-06 by site-directed mutagenesis. According to sequences alignment and homologous modeling, residues G107, T109 and S166 which were adjacent to the catalytic cavity were selected and substituted by Asp, Gln/Ser and Ala, respectively, to construct mutants G107D, T109Q, T109S and S166A. The BsAII mutant of G107D (G107Dansz) displayed superior performance in thermal tolerance and higher activity than the wild-type enzyme (towards l-asparagine). Comparative analysis of hydrogen bond interactions, surface electrostatic potential and structure of substrate binding pocket between G107Danszand BsAII indicated that the substitution of G107, which was adjacent to catalytic cavity with Asp, resulted in small conformational changes and surface electrostatic potential redistribution and contributed to the improved protein stability and catalytic efficiency.  相似文献   

15.
A bioactive peptide containing a glutamine-linked oligosaccharide was chemo-enzymatically synthesized by use of the solid-phase method of peptide synthesis and the transglycosylation activity of endo-β-N-acetylglucosaminidase. Substance P, a neuropeptide, is an undecapeptide containing two l-glutamine residues. A substance P derivative with an N-acetyl-d-glucosamine residue attached to the fifth or sixth l-glutamine residue from the N-terminal region was chemically synthesized. A sialo complex-type oligosaccharide derived from a glycopeptide of hen egg yolk was added to the N-acetyl-d-glucosamine moiety of the substance P derivative using the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis, and a substance P derivative with a sialo complex-type oligosaccharide attached to the l-glutamine residue was synthesized. This glycosylated substance P was biologically active, although the activity was rather low, and stable against peptidase digestion. The oligosaccharide moiety attached to the l-glutamine residue of the peptide was not liberated by peptide-N4-(N-acetyl-β-d-glucosaminyl) asparagine amidase F.  相似文献   

16.
Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The Km values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.  相似文献   

17.
The formation of gamma-glutamylhydroxamate by homogenates under optimum assay condition showed an inconstancy in the ratios of the enzyme activities utilizing l-glutamate and ATP (gamma-glutamylhydroxamate synthetase) and l-glutamine and ADP (l-glutamine-hydroxylamine glutamyltransferase) in a number of normal and neoplastic rat tissues. Although gamma-glutamylhydroxamate synthetase activities in adult livers and kidneys were identical in males and females, l-glutamine-hydroxylamine glutamyltransferase activities in the organs of females were significantly lower. The developmental formations of the two activities in liver, kidney, brain and muscle were not simultaneous. The l-glutamine-hydroxylamine glutamyltransferase activity in foetal liver or neonatal kidney could be prematurely evoked by thyroxine, but the gamma-glutamylhydroxamate synthetase activity remained unchanged. Injections of cortisol also had dissimilar effects on the two activities in thymus and hepatomas. The discrepant tissue distribution, asynchronous developmental formation and differential response to several hormonal stimuli provide evidence in vivo that the two activities are not catalysed by the same protein.  相似文献   

18.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

19.
Dextransucrase was shown to catalyze the hydrolysis of sucrose. The hydrolytic activity was found to be directly correlatable with dextransucrase activity on poly-(acrylamide) disc-gel electrophoresis. In studies on the hydrolysis of sucrose and formation of dextran as a function of time and substrate concentration, the two activities were found to be competitive with each other. Competition was also observed between hydrolysis and the transfer of d-glucosyl groups to added acceptors. The results suggest that the three activities, namely, polymerization, d-glucosyl transfer, and hydrolysis, compete for a form of the enzyme that is common to all three reactions. It is proposed that this form may be a d-glucosylated derivative of the enzyme.  相似文献   

20.
The relationships of five feedback inhibitors for the Bacillus licheniformis glutamine synthetase were investigated. The inhibitors were distinguishable by differences in their competitive relationship for the substrates of the enzyme. Mixtures of l-glutamine and adenosine-5'-monophosphate (AMP) or histidine and AMP caused synergistic inhibition of glutamine synthesis. Histidine, alanine, and glycine acted antagonistically toward the l-glutamine inhibition. Alanine acted antagonistically toward the glycine and histidine inhibitions. Independence of inhibitory action was observed with the other pairs of effectors. Possible mechanisms by which the inhibitors may interact to control glutamine synthesis are discussed. The low rate of catalysis of the glutamyl transfer reaction by the B. licheniformis glutamine synthetase can be attributed to the fact that l-glutamine serves both as a substrate and an inhibitor for the enzyme. Effectors which act antagonistically toward the l-glutamine inhibition stimulated glutamotransferase activity. The stimulation was not observed when d-glutamine was used as substrate for the glutamyl transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号