首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A corticotropin-releasing factor (CRF) binding protein has been identified based on the chemical cross-linking of ovine [Nle21,m-125I-Tyr32]CRF (125I-oCRF) to bovine anterior pituitary membranes using disuccinimidyl suberate (DSS). The apparent molecular weight of the cross-linked complex determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography was approximately 75,000 and was slightly decreased in its nonreduced state, suggesting the presence of intramolecular disulfide bonds. Subtracting the molecular weight of 125I-oCRF, the binding protein appeared to have a molecular weight of approximately 70,000. The cross-linking was specific since an excess (1 microM) of an unrelated peptide (insulin) did not affect the appearance of the Mr 75,000 band. The concentration of CRF required to inhibit cross-linking by 50% was found to be similar to that determined for bovine pituitary CRF receptors by radioreceptor assay. The nonhydrolyzable GTP analogue 5'-guanylylimidodiphosphate dose dependently inhibited the cross-linking of 125I-oCRF to the Mr 70,000 protein. 50 nM of the inactive CRF analogue, [Ala14]oCRF, had no effect on the cross-linking, an observation which is consistent with this compound's low potencies in bioassays and radioreceptor assays. These results strongly suggest that this Mr 70,000 protein is the biological bovine anterior pituitary CRF receptor.  相似文献   

2.
125I-Labeled colony-stimulating factor (CSF) 2 alpha (interleukin 3, multi-CSF, and mast cell growth factor) was used to characterize receptors specific for this lymphokine on the cell surface of the factor-dependent cell line FDC-P2. CSF-2 alpha binding to these cells was specific and saturable. Among a panel of lymphokines and growth factors, only unlabeled CSF-2 alpha was able to compete for the binding of 125I-labeled CSF-2 alpha to cells. Equilibrium binding studies revealed that CSF-2 alpha bound to 434 +/- 281 receptors/cell with a Ka of 8.7 +/- 3.9 X 10(9) M-1. Affinity cross-linking experiments with the homobifunctional cross-linking reagents disuccinimidyl suberate, disuccinimidyl tartrate, and dithiobis(succinimidyl propionate) produced a radiolabeled band of Mr = 97,000 on intact cells and in purified cell membranes, while an additional band of Mr = 138,000 was produced upon cross-linking to intact cells only. The relationship between these two bands is discussed. The results indicate that the receptor for CSF-2 alpha on FDC-P2 cells consists at a minimum of a subunit of Mr = 72,500.  相似文献   

3.
Lactogenic receptors were analysed with the use of the cross-linking agent disuccinimidyl suberate to attach covalently 125I-labelled ovine prolactin or human growth hormone to binding sites from (1) liver from pregnant rats and (2) the rat-derived Nb2 lymphoma cell line. Analysis by SDS/polyacrylamide-gel electrophoresis of the proteins cross-linked to labelled hormone in rat liver indicated a major specifically-labelled complex with an Mr of 68,000-72,000, when run under reducing or non-reducing conditions. With Nb2 cells a major specifically-labelled complex with an Mr of 97,000-110,000 was identified, but only when electrophoresis was run using reducing conditions. Assuming one hormone molecule (Mr 22,000-24,000) per hormone-receptor complex, then the receptor proteins have an Mr of 44,000-50,000 for rat liver and 73,000-88,000 for the Nb2 cells. For both cell types the receptors were of lactogenic specificity; lactogenic hormones competed for binding whereas somatogenic hormones did not. These studies suggest that the lactogenic receptors in rat liver membranes and Nb2 cells differ in two respects. Firstly, the Mr of the labelled receptor protein in Nb2 cells is greater than that of the corresponding receptor protein in rat liver membranes; secondly, the Nb2 cell receptor appears to exist as a disulphide-linked oligomer whereas the receptor in rat liver membranes does not.  相似文献   

4.
Somatostatin binding and cross-linking to its receptors on rat cerebrocortical membranes were characterized with [125I-Tyr1]somatostatin-14 and [125I-Leu8, D-Trp22, Tyr25]somatostatin-28. When [125I-Tyr1]somatostatin-14 was cross-linked to its receptors with the photoreactive cross-linker, N-(5-azido-2-nitrobenzoyloxy)succinimide, the hormone was specifically associated with a Mr = 72,000 protein band in the presence or absence of reducing agents. Affinity labeling of the Mr = 72,000 protein band was decreased with increasing concentrations of unlabeled somatostatin-14 and nonhydrolyzable guanine nucleotide analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Pretreatment of cerebrocortical membranes with islet-activating protein resulted in a decrease in subsequent labeled somatostatin-14 binding and affinity-labeling of the protein and abolished an inhibitory effect of somatostatin-14 on vasoactive intestinal peptide-stimulated increase in adenylate cyclase activity. When the affinity-labeled protein was solubilized with Zwittergent 3-12 and adsorbed to wheat germ agglutinin-agarose, it was eluted by N-acetylglucosamine. [125I-Leu8, D-Trp22, Tyr25]somatostatin-28 cross-linking to cerebrocortical and pancreatic membranes with the same photoreactive agent revealed specifically labeled protein bands of a Mr = 74,000 in cerebrocortical membranes and a Mr = 94,000 in pancreatic membranes, respectively. These results suggest that: 1) somatostatin receptor on cerebrocortical membranes is a monomeric glycoprotein with a Mr = 70,000 binding subunit, coupled to guanine nucleotide regulatory protein, and 2) the Mr = 70,000 protein may be a common receptor for somatostatin-28 and somatostatin-14 and is distinct from a common pancreatic type receptor.  相似文献   

5.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

6.
Calcitonin receptors of human osteoclastoma   总被引:2,自引:0,他引:2  
Osteoclast-rich cultures were prepared by disaggregation of osteoclastomas (giant cell tumour of bone) and settlement onto glass or plastic surfaces. Autoradiography using [125I]-salmon calcitonin ([125I]-sCT) revealed specific binding only to multinucleate giant cells (osteoclasts) and a minor population of mononuclear cells. [125I]-sCT competitive binding studies indicated a Kd of 5 x 10(-10) M and receptor number of approximately 1 million sites/osteoclast. sCT treatment resulted in a dose-dependent rise in cAMP (EC50 10(-10) M). Homogenates of an osteoclastoma also demonstrated specific binding of [125I]-sCT. Chemical cross-linking of a labelled synthetic sCT derivative. [125I]-[Arg11,18,Lys14]-sCT, using disuccinimidyl suberate, resulted in labelling of a receptor component of approximate Mr 85-90,000. The multinucleate giant cells (osteoclasts) of human osteoclastomas possess large number of CT receptors which exhibit the same binding kinetics and apparent Mr as those of other CT target cells.  相似文献   

7.
The ligand binding subunits of the corticotropin-releasing factor (CRF) receptors in brain and anterior pituitary of a number of species have been identified by chemical affinity cross-linking using the homobifunctional cross-linking agent disuccinimidyl suberate and 125I-Tyr0-oCRF (ovine CRF). In homogenates of rat, monkey, and human cerebral cortex, 125I-Tyr0-oCRF was covalently incorporated into a protein of Mr = 58,000. Under identical conditions in the anterior pituitary of rat, monkey, cow, and pig, 125I-Tyr0-oCRF was incorporated into a protein of apparent Mr = 75,000. The specificity of the labeling was typical of the CRF binding site since both the cerebral cortex- and pituitary-labeled proteins exhibited the appropriate pharmacological rank order profile characteristic of the CRF receptor (Nle21,Tyr32-oCRF approximately equal to rat/human CRF approximately equal to ovine CRF approximately equal to alpha-helical CRF(6-41) greater than alpha-helical oCRF(9-41) greater than or equal to oCRF(7-41) greater than rat/human CRF(1-20) approximately equal to vasoactive intestinal peptide). In addition to the major labeled proteins, 125I-Tyr0-oCRF was incorporated into higher molecular weight peptides which may represent precursors and into lower molecular weight components which may represent fragments of the major labeled proteins or altered forms of the CRF binding subunit. In summary, these data indicate a heterogeneity between brain and pituitary CRF receptors with the ligand binding subunit of the brain CRF receptor residing on a Mr = 58,000 protein, while in the anterior pituitary, the identical binding subunit resides on a protein of apparent Mr = 75,000.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) is a bifunctional, density-dependent regulator of vascular smooth muscle cell (SMC) proliferation in vitro (at sparse densities SMC are growth-inhibited by the peptide, whereas at confluent densities TGF-beta potentiates their growth). We have used affinity labeling and ligand binding techniques to characterize cell surface receptors for TGF-beta under sparse and confluent culture conditions. Confluent SMC, whose growth are promoted by TGF-beta, exhibited a single class of high affinity TGF-beta binding sites (Kd = 6 pM, 3,000 sites/cell). In contrast, sparse SMC (whose growth are inhibited by TGF-beta) expressed two distinct classes of high affinity binding sites with binding constants of 6 pM (3,000 sites/cell) and 88 pM (11,000 sites/cell). By affinity labeling using 125I-TGF-beta and disuccinimidyl suberate cross-linking, confluent cells were found to express a major Mr = 280,000 TGF-beta receptor as well as trace amounts of low molecular weight (Mr = 85,000 and 65,000) receptor subtypes. All three of these receptors were determined, by ligand competition, to show similar affinity for TGF-beta. The predominant receptor subtypes expressed by sparse SMC exhibited apparent Mr = 75,000 and 65,000. In ligand competition experiments, the Mr = 75,000 receptor subtype (never present in confluent cultures) exhibited lower relative affinity for TGF-beta than did the Mr = 65,000 form. The ability of TGF-beta to inhibit SMC proliferation, therefore, correlates with the expression of a unique TGF-beta-binding protein on the SMC surface. The data suggest that TGF-beta may exert opposite biological effects on the same cell type via an interaction with distinct, selectively expressed receptor subtypes.  相似文献   

9.
125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15-19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.  相似文献   

10.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% beta-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 microM unlabeled insulin, but not by 1 microM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

11.
Gastrin17gly acts as a growth factor for the colonic mucosa. Studies of the receptor involved have generally been restricted to its binding properties, and no investigation of the structure of gastrin17gly receptors on human colorectal carcinoma cell lines has yet been reported. The aim of this study was to optimise the conditions for binding of gastrin17gly to the human colorectal carcinoma cell line DLD-1, and to investigate the structure of the receptor responsible. Binding of 125I[Met15]gastrin17gly to DLD-1 cells was measured in competition experiments with increasing concentrations of either gastrin17gly or gastrin17, or with single concentrations of gastrin receptor antagonists. The molecular weights of the gastrin17gly binding proteins were determined by gel electrophoresis and autoradiography after covalent cross-linking of 125I[Nle15]gastrin2,17gly to cells or membranes with disuccinimidyl suberate. The IC50 value for binding of gastrin17gly to DLD-1 cells was 2.1+/-0.4 microM. Binding was inhibited by the non-selective gastrin/cholecystokinin receptor antagonists proglumide and benzotript, but not by the cholecystokinin-A receptor antagonist L364,718, or the gastrin/cholecystokinin-B receptor antagonist L365,260. The molecular weight of the major gastrin binding protein on DLD-1 cells or membranes was 70,000. We conclude that the major gastrin17gly binding site on the human colorectal carcinoma cell line DLD-1 is clearly distinct from the cholecystokinin-A and gastrin/cholecystokinin-B receptors, but is similar in some respects to the gastrin/cholecystokinin-C receptor.  相似文献   

12.
The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the β-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existng specifically on hemopoietic cells.  相似文献   

13.
Membranes derived from free floating granulosa cells in porcine ovarian follicular fluid were used as a starting material for structural characterization of both LH/hCG and FSH receptors. The receptors were highly hormone-specific and showed single classes of high-affinity binding sites (Kd = 19-74 pM). Their molecular weights as determined by affinity cross-linking with their respective 125I-ligands were similarly 70,000. The membrane-localized receptors could be solubilized with reduced Triton X-100 in the presence of 20% glycerol with good retention of hormone binding activity. The Triton extracts of membranes also showed hormone specificity and equilibrium binding constants similar to the membrane receptors (Kd = 32-48 pM). Affinity chromatography on divinylsulfonyl-Sepharose-oLH columns was utilized to purify the solubilized LH/hCG receptor to a specific activity of 2000 pmol/mg of protein. The purified receptor exhibited a high specificity for hCG and hLH but not for hFSH nor bTSH. The purified receptor was iodinated and visualized to be composed of a major protein of Mr approximately 70,000 and other minor proteins of molecular weights ranging from 14,000 to 40,000. Except for the Mr 14,000 protein, all other protein species bound to the concanavalin A-Sepharose column. The data suggest that the ovarian LH/hCG and FSH receptors are structurally similar and consist of a single polypeptide chain, as recently documented for the LH/hCG receptor (Loosefelt et al., 1989; McFarland et al., 1989).  相似文献   

14.
The neuropeptide substance P (SP) stimulates human T-lymphocyte function in vitro. Human blood T-lymphocytes and cultured human IM-9 B-lymphoblasts express 7,000-10,000 and 25,000-30,000 substance P receptors per cell, respectively. The specific binding of 125I-SP is retained in IM-9 lymphoblast membranes solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) at a detergent-to-protein ratio of 1.0. In addition, specific and reversible SP binding to soluble IM-9 cell membrane proteins is demonstrated by gel filtration. The saturation of binding of 125I-SP to both intact and solubilized IM-9 cell membranes attained a steady state after 40-50 min at 4 degrees C. Scatchard analysis of the concentration dependence of 125I-SP binding to IM-9 cell membranes revealed a KD of 0.87 +/- 0.8 nM (mean +/- S.D., n = 4), which is similar to that observed in intact cells, and a density of receptors of 21 +/- 3 fmol/mg of membrane protein (mean +/- S.D.). Binding of 125I-SP to solubilized membranes demonstrated a KD of 0.75 +/- 0.33 nM (mean +/- S.D., n = 3) and a density of receptors of 3.7 +/- 1.5 fmol/mg of membrane protein (mean +/- S.D., n = 3). Affinity cross-linking of 125I-SP by disuccinimidyl suberate to intact IM-9 cells and membranes revealed specifically labeled proteins of Mr 58,000 and 33,000 in cells, and 58,000, 33,000, and 16,000 in membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Competitive effects of substituent peptides of SP on cross-linking and 125I-SP binding to membranes demonstrated that the SP receptor recognized the carboxyl-terminal domain of the peptide. Membranes from cells preincubated in vitro for 12 h at 37 degrees C with 10(-8) M SP demonstrated a decrease in SP receptor density to 13 +/- 2 fmol/mg (mean +/- S.D., n = 2), and a parallel diminution in the specific labeling of membrane proteins of Mr 58,000 and 33,000. These observations suggest that solubilization in CHAPS preserves the binding characteristics of the IM-9 lymphoblast receptor for SP, and that affinity cross-linking techniques identify by sodium dodecyl sulfate-polyacrylamide gel electrophoresis membrane proteins that are specifically labeled by SP.  相似文献   

15.
Granulocyte colony-stimulating factor (G-CSF) and multipotential colony-stimulating factor (multi-CSF or interleukin 3) are two members of a family of hemopoietic growth and differentiation factors. Using biologically active radioiodinated derivatives and chemical cross-linking (predominantly with the homobifunctional reagent disuccinimidyl suberate) followed by gel electrophoresis and autoradiography, receptors for these two factors have been identified. The G-CSF receptor was identified as a single subunit protein of Mr approximately 150,000 while two molecular species able to specifically cross-link to 125I-multi-CSF were identified of Mr approximately 75,000 and 60,000. For both CSFs specificity of formation of cross-linked species was demonstrated by showing that the homologous unlabeled CSF (but not other CSFs) competed for formation of the complexes with the appropriate dose-response relation, by showing that saturation occurred over the appropriate range of 125I-CSF concentration and by showing that the cellular specificity of CSF binding paralleled that for cross-linked complex formation. The formation of cross-linked complexes was dependent on the concentration and type of chemical cross-linker, especially for cross-linking of 125I-multi-CSF. Based on a number of criteria it is suggested that the two species cross-linked to 125I-multi-CSF do not represent receptors of different affinity but, rather, two noncovalently associated subunits of a receptor complex.  相似文献   

16.
The primary structure of the human substance K receptor was established from the sequences of complementary DNA clones isolated from a human jejunal complementary DNA library. It consists of 398 amino acids, including seven putative transmembrane regions. The gene for the human substance K receptor was localized to chromosome region 10p13-10q23, a region with frequent chromosomal abnormalities. The human substance K receptor was expressed in transfected NIH-3T3 cells lacking endogenous substance K receptors, and Scatchard analysis of 125I-labeled substance K binding indicates approximately 100,000 receptors/cell with a single dissociation constant of 12 nM. Covalent cross-linking experiments utilizing 125I-substance K and three different chemical cross-linking reagents (disuccinimidyl suberate, disuccinimidyl tartrate, or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-HCl) demonstrate an apparent molecular weight of 45,000, consistent with little or no N-linked glycosylation. The binding of substance K to its receptor on transfected cells led to a rapid increase in the production of total inositol phosphates and the release of Ca2+ from internal stores. Growth of the cells transfected with the human substance K receptor is stimulated by the addition of substance K to the medium to a level similar to 10% serum. Therefore, the human substance K receptor can function as a growth factor receptor when expressed in mouse 3T3 cells.  相似文献   

17.
Peptide YY (PYY) receptors were solubilized from rat jejunal crypts using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of [125I-Tyr36]monoiodo-PYY ([125I]PYY) to CHAPS extracts was time-dependent and reversible. The order of potency of PYY-related peptides for inhibiting [125I]PYY binding was PYY greater than neuropeptide Y much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data indicated the presence in soluble extracts of a single class of binding sites with a Kd of 1.02 +/- 0.26 nM and a Bmax of 79 +/- 6 fmol/mg protein. Gel filtration on Sephacryl S-300 and ultracentrifugation on sucrose density gradients of soluble [125I] PYY-receptor complexes revealed a single binding component with the following hydrodynamic parameters: Stokes radius, 4.43 nm; s20,w, 2.48 S; Mr, 48,000; frictional ratio, 1.82. Solubilized PYY receptors bound specifically to concanavalin A-, wheat germ agglutinin-, and soybean-coupled Sepharose, supporting their glycoproteic nature. After cross-linking with disuccinimidyl suberate, electrophoresis of covalent [125I]PYY-receptor complexes in membranes or CHAPS extracts revealed the presence of two bands of Mr 49,000 or 28,000 whose labeling was completely abolished by 1 microM unlabeled PYY. The Mr 49,000 band probably corresponded to the Mr 48,000 PYY-receptor complex evidenced by hydrodynamic studies. Assuming one molecule of [125I]PYY (Mr 4,000) was bound per molecule of receptor, these data show that intestinal PYY receptor consists of a Mr 44,000 glycoprotein after solubilization with CHAPS. The availability of this CHAPS-soluble receptor from rat jejunum represents a major step toward the purification of this newly characterized receptor.  相似文献   

18.
The structure of receptors for insulin-like growth factors in rat liver plasma membranes and the BRL 3A2 rat liver cell line has been examined by chemical cross-linking with disuccinimidyl suberate and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. Two receptor subtypes have been identified: (i) 125I multiplication-stimulating activity cross-linked to liver membranes or intact cells appeared in a complex of Mr = 260,000 (reduced) and 220,000 (nonreduced) and (ii) 125I-insulin-like growth factor I cross-linked to BRL 3A2 cells appeared predominantly in two bands of Mr greater than 300,000 without disulfide reduction and in a Mr = 130,000 complex following reduction. The two subtypes of insulin-like growth factor receptors identified by structural analysis correspond to previously observed differences in their specificity for insulin and insulin-like growth factors.  相似文献   

19.
125I-labeled vasoactive intestinal polypeptide (125I-VIP) was covalently cross-linked with its binding sites on intact cultured human lymphoblasts by each of three bifunctional reagents: disuccinimidyl suberate (DSS), ethylene glycol bis(succinimidyl succinate) (EGS), and N-succinimidyl 6-(4'-azido-2'-nitrophenylamino) hexanoate (SANAH). A fourth cross-linking agent with a shorter chain length, N-hydroxysuccinimidyl 4-azidobenzoate (HSAB), was much less effective in cross-linking 125I-VIP to the site. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography demonstrated a band of Mr approximately equal to 50,000 +/- 3,000, regardless of which cross-linker was used. The labeling of this band was specific in that it was prevented by 10(-6) M unlabeled VIP and was partially blocked by the homologous hormones secretin and glucagon. The relative potencies of these peptides in blocking the cross-linking of 125I-VIP to the Mr approximately equal to 50,000 band of the lymphoblasts (VIP greater than secretin greater than or equal to glucagon) were similar to those previously found for competitive inhibition of 125I-VIP binding to its putative high-affinity receptor on these cells. The covalent cross-linking required a bifunctional reagent; it was dependent on both the number of Molt cells and the concentration of 125I-VIP. The apparent molecular weight of the cross-linked species was unchanged by treatment with dithiothreitol. These observations suggest that the Mr = 50,000 species represents 125I-VIP cross-linked to a specific plasma membrane receptor and that the receptor does not contain interchain disulfide bonds.  相似文献   

20.
Galanin receptors were solubilized from rat brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). Binding of 125I-galanin to the soluble fraction was time- and temperature-dependent, saturable, and reversible. Scatchard analysis of binding data indicated that the soluble extract contained a single class of galanin binding sites with a Kd of 0.8 nM and a Bmax of 26 fmol/mg of protein. Unlabeled galanin and its fragments galanin(2-29) and galanin(1-15) antagonized the binding of 125I-galanin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane receptors. Galanin(3-29) was found inactive. Binding of 125I-galanin to CHAPS extracts was inhibited by guanine nucleotides with the following rank order of potency: GMP-P-(NH)P greater than GTP greater than GDP. Molecular analysis of the soluble galanin receptor by covalent cross-linking of 125I-galanin to CHAPS extracts using disuccinimidyl tartrate and further identification on SDS-PAGE indicated that the soluble galanin binding site behaves as a protein of Mr 54,000. After incubation of CHAPS extracts with 125I-galanin, gel filtration on Sephacryl S-300 followed by ultracentrifugation on sucrose density gradient revealed a binding component with the following hydrodynamic parameters: Stokes radius, 5 nm; s20,w, 4.5 S; Mr, 98,000; frictional ratio, 1.6. GMP-P(NH)P treatment of CHAPS extracts gave rise to a molecular form with the following characteristics: Stokes radius, 4 nm; s20,w, 3.3 S; Mr, 57,000; frictional ratio, 1.4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号