首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific inhibitor of poly(ADP-ribose)polymerase-3-aminobenzamide (6 mM) has been shown to: 1) reduce survival of non-irradiated CHO-K1 cells, cultivated in medium containing 5-bromodeoxyuridine (10 mkM, BDU cells), and increase their radiosensitivity; 2) induce G2 delay in BDU cells while progressing through the cell cycle as analysed by the DNA flow cytometry; 3) increase to a great degree G2 delay in X-irradiated BDU cells. 3-Aminobenzamide is primarily effective when it is present during the first or two first cell cycles after the initial addition of BDU. The above data confirm the involvement, presumably an indirect one, of ADP-ribosylation in the DNA repair through affecting the chromatin structure.  相似文献   

2.
The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase of the cell cycle. RNA interference-mediated depletion of SMC1 sensitized HeLa cells to X-rays. Repair of radiation-induced DNA double-strand breaks, measured by γH2AX/53BP1 foci analysis, was slower in SMC1- or Rad21-depleted cells than in controls in G2 but not in G1. Inhibition of the DNA damage kinase DNA-PK, but not ATM, further inhibited foci loss in cohesin-depleted cells in G2. SMC1 depletion had no effect on DNA single-strand break repair in either G1 or late S/G2. Rad21 and SMC1 were recruited to sites of X-ray-induced DNA damage in G2-phase cells, but not in G1, and only when DNA damage was concentrated in subnuclear stripes, generated by partially shielded ultrasoft X-rays. Our results suggest that the cohesin complex contributes to cell survival by promoting the repair of radiation-induced DNA double-strand breaks in G2-phase cells in an ATM-dependent pathway.  相似文献   

3.
The inactivation of bacteriophage HP1c1 by X rays in a complex medium was found to be exponential, with a D0 (the X-ray exposure necessary to reduce the survival of the phage to 37%) of approximately 90 kR. Analysis of results of sucrose sedimentation of DNA from X-irradiated whole phage showed that the D0 for intactness of single strands was about 105kR, and for intactness of double strands, it was much higher. The D0 for attachment of X-irradiated phage to the host was roughly estimated as about 1,100 kR. Loss of DNA from the phage occurred and was probably due to lysis of the phage by X irradiation, but the significance of the damage is not clear. The production of single-strand breaks approaches the rate of survival loss after X irradiation. However, single-strand breaks produced by UV irradiation, in the presence of H2O2, equivalent to 215 kR of X rays, showed no lethal effect on the phage. Although UV-sensitive mutants of the host cell, Haemophilus influenzae, have been shown to reactivate UV-irradiated phage less than does the wild-type host cell, X-irradiated phage survive equally well on the mutants as on the wild type, a fact suggesting that other repair systems are involved in X-ray repair.  相似文献   

4.
The effects of the glucose antimetabolite, 2-deoxy-D-glucose (2-DG), on DNA repair (assayed by unscheduled DNA synthesis) and on the repair of potentially-lethal damage (assayed by cell viability after irradiation) have been studied in X-irradiated respiratory-deficient yeast cells (auxotroph for 5'-thymidine-monophosphate). Experimental results show that: (a) both these phenomena can be inhibited by 2-DG; (b) the repair of potentially-lethal damage occurs after the unscheduled DNA synthesis is almost complete; and (c) the repair of potentially-lethal damage can be inhibited by 2-DG even after the completion of the unscheduled DNA synthesis.  相似文献   

5.
A correlation has been shown between a strong decrease in survival of X-irradiated CHO-K1 cells cultured with 5-BudR, a strong inhibition of recovery of DNA single-strand breaks, and an essential increase in G2-delay while progressing through the cell cycle. This strong correlation may point to the involvement of repair processes into the final radiation effect on the cell.  相似文献   

6.
DNA double-strand break repair and restoration of viability in X-irradiated diploid yeast cells homozygous for rad50, rad51, rad52, rad55 mutations were studies under conditions of keeping the cells in non-nutrient medium, after irradiation. All the cells were synchronized at the G1 stage of the cell cycle. In contrast to the wild-type yeast, this group of mutants are unable to repair DNA double-strand breaks and do not enhance viability, when kept in non-nutrient medium after irradiation.  相似文献   

7.
Summary Brain cells (b-cells) and liver cells (l-cells) of the chicken embryo and thymic cells (t-cells) of the rat were X-irradiated in vitro at doses of 1.25–50 Gy. When compared to t-cells, b- and l-cells exhibited1) a lower stimulation of poly (adenosine diphosphate-ribose) transferase and unscheduled DNA synthesis following X-irradiation,2) an almost fivefold higher inhibition of semiconservative DNA synthesis,3) a less condensed chromatin,4) about fourfold higher threshold doses with regard to significant effects on nucleoid sedimentation and viscometry of alkaline cellular lysates, and5) an apparently two- to threefold lower DNA repair during a 30 min post-exposure repair period. The results suggest that the lower radiation sensitivity of chicken embryo cells is attributable to an initial mechanism of DNA repair and/or DNA protection which may be closely connected to minor chromatin compactness and higher intrinsic activities of repair enzymes.  相似文献   

8.
Sirtuins (type III histone deacetylases) are an important member of a group of enzymes that modify chromatin conformation. We investigated the role of sirtuin inhibitor, GPI 19015, in double strand break (DSB) repair in CHO-K1 wt and xrs-6 mutant cells. The latter is defective in DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end-joining (D-NHEJ). DSB were estimated by the neutral comet assay and histone gammaH2AX foci formation. We observed a weaker effect of GPI 19015 treatment on the repair kinetics in CHO wt cells than in xrs6. In the latter cells the increase in DNA repair rate was most pronounced in G1 phase and practically absent in S and G2 cell cycle phases. The decrease in the number of histone gammaH2AX foci was faster in xrs6 than in CHO-K1 cells. The altered repair rate did not affect survival of X-irradiated cells. Since in G1 xrs6 cells DNA-PK-dependent non-homologous end-joining, D-NHEJ, does not operate, these results indicate that inhibition of sirtuins modulates DNA-PK-independent (backup) non-homologous end-joining, B-NHEJ, to a greater extent than the other DSB repair system, D-NHEJ.  相似文献   

9.
The kinetics of DNA double-strand breakage (d.s.b.) repair in X-irradiated Chinese hamster V79 cells were found to be affected by cell-cycle position. In mitotic cells, the repair kinetics were monophasic with a half-time value of about 32 min, whilst in G1, S, or asynchronous cultures, the kinetics were biphasic with half-time values of around 2.7 and 27 min. The repair of DNA single-strand breakage (s.s.b) was also shown to be slower in mitotic than in interphase cells. The DNA d.s.b. repair system, in both mitotic and interphase cells, showed no evidence of saturation within the X-ray dose range covered. The implications of these findings for the mechanism of DNA d.s.b. repair and for models of ionizing radiation action are discussed.  相似文献   

10.
We demonstrate by single-cell microgel electrophoresis that the 2 main techniques, trypsinization and scraping, used to collect normal diploid mammalian cells cultured in monolayer induce DNA damage. To minimize this potential interference with studies on DNA damage and repair, we have standardized the single-cell gel electrophoretic (SCG) technique for the in situ quantitation of DNA single-strand breaks and alkali-labile sites in cultured human-fibroblasts. To demonstrate the utility of this technique, human neonatal foreskin-derived fibroblasts were allowed to attach to frosted microscope slides and then either irradiated with X-rays (25-200 rad) or treated for 1 h with hydrogen peroxide (2.2-140.8 mumoles). Treatment with either agent induced a dose-dependent increase in DNA migration. At equal levels of DNA damage, cell-to-cell variability in DNA migration was more heterogeneous for hydrogen peroxide-treated cells than for X-irradiated cells. A time course study to evaluate the kinetics of DNA repair for X-ray (200 rad)-induced damage indicated that the damage was completely repaired within 2 h. Applications of this technique for in vitro toxicology are discussed.  相似文献   

11.
A model which explains mesosome formation via a contraction of the cytoplasm and nucleoid when bacteria are physiologically disturbed was tested by: (1) X-irradiation of unfixed cells of Streptococcus faecalis to produce chromosomal breaks and to remove DNA attached to the cell membrane; (2) subsequent determination of the number of irradiated cells in which mesosomes (using electron microscopy) and central density changes (using phase-contrast microscopy) could be visualized after fixative was added. Results obtained by exposure of cells to doses up to 1100 krads before fixation indicated that: (1) the number of cells with central mesosomes was reduced proportional to the decrease in the molecular weight of the DNA due to double-strand breaks: (2) the number of cells with total (central plus peripheral) mesosomes and the number of cells with peripheral mesosomes were both reduced proportional to the removal of DNA attached to the cell membrane (M band); (3) the nucleoid became more diffusely organized. Exposure of cells to doses greater than 1100 krads before fixation resulted in: (1) an increase in the number of cells with central and peripheral mesosomes (compared to cells exposed to lower dosages); (2) a return to the centralized, dense nucleoid seen in unirradiated cells.These results suggest that mesosomes are formed when localized sites on the cell membrane are pulled from close contact with the cell wall into the cytoplasm by the action of a cross-linking fixative via the aggregation of intracytoplasmic components such as DNA. This model considers the attachment of DNA and/or other cytoplasmic components to the membrane as an intrinsic part of its mechanism. The formation of central and peripheral mesosomes in unirradiated and X-irradiated cells are contrasted.  相似文献   

12.
Bradley and Kohn (1979) showed that the neutral filter elution technique detects DNA double-strand breaks (dsb), yet there is still some uncertainty regarding the interpretation of results obtained with this technique (viz. the curvilinear dose-response curve and the rapid repair kinetics). In this report we have investigated the effect of the nucleoside analogue 9-beta-D-arabinofuranosyladenine (ara A), a known inhibitor of dsb repair, on the DNA repair in X-irradiated Ehrlich ascites tumour cells as measured by this technique. We have compared the effect of ara A on repair in these cells with results previously obtained with the same cell line and using the neutral velocity sedimentation and DNA unwinding techniques (Bl?cher, 1982; Bryant and Bl?cher, 1982). Our results suggest that the lesions measured by the neutral elution technique are different from those measured by neutral velocity sedimentation or long-term repair measured by DNA unwinding.  相似文献   

13.
In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G2, S and G1 phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G1 irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G1 irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G1 in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.  相似文献   

14.
The cell killing and induction of sister-chromatid exchanges (SCEs) by X-rays and short-wave ultraviolet (UV) irradiation in combination with inhibitors of DNA repair, 3-aminobenzamide (3AB), cytosine arabinoside (ara-C) or aphidicolin (APC) were studied in wild-type CHO-K1 and two X-ray-sensitive mutants, xrs 5 and xrs 6 cells. The spontaneous frequency of SCEs was similar in the mutants and the wild-type CHO-K1 cells (8.4-10.3 SCEs/cell). Though X-rays are known to be poor inducers of SCEs, a dose-dependent increase in the frequency of SCEs in xrs 6 cells (doubling at 150 rad) was found in comparison to a small increase in xrs 5 and no increase in wild-type CHO-K1 cells. 3AB, an inhibitor of poly(ADP-ribose) synthetase increased the spontaneous frequency of SCEs in all the cell types. 3AB did not potentiate the X-ray-induced frequency of SCEs in any of the cell lines. Ara-C, an inhibitor of DNA polymerase alpha, increased the frequency of SCEs in all the cell lines. In combined treatment with X-rays, ara-C had no synergistic effect in xrs 5 and xrs 6 cells, but the frequency of SCEs increased in X-irradiated wild-type CHO-K1 cells post-treated with ara-C. For the induced frequency of SCEs, CHO-K1 cells treated with X-rays plus ara-C behaved like xrs 6 cells treated with X-rays alone, suggesting a possible defect in DNA base damage repair in xrs 6 cells, in addition to the known defective repair of DNA double-strand breaks (DSBs). Survival experiments revealed higher sensitivity of xrs 5 and xrs 6 mutant cells to the cell killing effect of X-rays in S-phase when compared to wild-type CHO-K1 cells. The mutants responded with lesser sensitivity to cell killing effect of ara-C and APC than CHO-K1 cells, the relative sensitivity to ara-C or APC being CHO-K1 greater than xrs 5 greater than xrs 6 cells. When X-irradiation was coupled with ara-C, the results obtained for survival were similar to those of the SCE test, i.e., unlike wild-type CHO-K1, no synergistic effect was observed in xrs 5 or xrs 6 cells. After UV-irradiation, the frequency of SCEs increased similarly in wild-type CHO-K1 and xrs 6 cells, but xrs 5 cells responded with lower frequency of SCEs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The kinetics of disappearance of single-strand breaks (SSB) from the DNA of X-irradiated stationary yeast cells under liquid-holding conditions was found to proceed in a dose-independent manner up to a dose of at least 2400 Gy, and was found to be complete after incubation of cells for 1 h. This was deduced from data for a yeast wild-type (WT) haploid and diploid strain as well as for rad52 haploid cells defective in DNA double-strand break (DSB) repair. In all cases an initial fast repair component assumed to correspond to SSB repair was observed whereby about 80% of the induced 'unwinding points' disappeared from the DNA with a time constant of about 3 min. Following this fast component, a slower component of removal of 'unwinding points' occurred with a time constant estimated to be 20 min. The molecular nature of these two components of repair is not known. We could find no evidence for the induction of secondary (enzymatic) breaks in the DNA during post-irradiation incubation. Incubation of cells in growth medium after irradiation resulted in similar kinetics as those under liquid-holding conditions. In the absence of an energy source in the medium (i.e. when cells were incubated in buffer or distilled water after irradiation) only 60-80% of the SSB were removed from yeast DNA. Residual SSB disappeared from the DNA only when cells were transferred to a medium containing glucose. The relative mass of DNA unwound per induced strand break (i.e. represented by the slope of the dose-effect curve immediately after irradiation) was found to change slowly with the age of the cell culture under liquid-holding conditions. This effect had to be corrected for in the measurements of strand break repair under these conditions.  相似文献   

16.
17.
DNA-protein cross-linking by ultraviolet radiation was measured in human fibroblasts by an adaptation of the method of DNA alkaline elution. To measure cross-linking, a controlled frequency of DNA single-strand breaks was introduced by exposing the cells to a low dose of X-ray at 0 degrees C prior to analysis by alkaline elution. The effect of prior exposure of the cells to ultraviolet radiation was to reduce the rate and/or extent of DNA elution from X-irradiated cells. This effect was attributed to DNA-protein cross-linking, since the effect was reversed by treatment of the cell lysates with proteinase-K. Cross-linking in normal human fibroblasts occurred immediately after ultraviolet irradiation, prior to the appearance of DNA single-strand breaks due to excision repair. Upon incubation of normal cells after exposure, to ultraviolet radiation, the cross-linking was partially repaired. In xeroderma pigmentosum cells, cross-links appeared as in normal cells, but there was no repair. Instead, the extent of cross-linking appeared to increase upon incubation after ultraviolet irradiation.  相似文献   

18.
EM9 cells are a line of Chinese hamster ovary cells that are sensitive to killing by ethylmethanesulfonate (EMS) and X ray, since they are unable to repair the DNA damage inflicted by these agents. Through DNA-mediated gene transfer, human DNA and a selectable marker gene, pSV2neo, were transfected into EM9 cells. Resistant clones of transfected cells were selected for by growth in EMS and G418 (an antibiotic lethal to mammalian cells not containing the transfected neo gene). One primary clone (APEX1) and one secondary clone (TEMS2) were shown to contain both marker and human DNA sequences by Southern blot. In cell survival studies, APEX1 was shown to be as resistant to EMS and X ray as the parental cell type AA8 (CHO cells). TEMS2 cells were found to be partially resistant to EMS and X ray, displaying an intermediate phenotype more sensitive than AA8 cells but more resistant than EM9 cells. Alkaline elution was used to assess the DNA strand-break rejoining ability of these cells at 23 degrees C. APEX1 cells showed DNA repair capacity equal to that of AA8 cells; 75% of the strand breaks were repaired with a rejoining T 1/2 of 3 min. TEMS2 showed similar levels of repair but a T 1/2 for repair of 9 min. EM9 cells repaired only 25% of the breaks and showed a T 1/2 for repair of 16 min. The DNA repair data are consistent with the survival data in that the more resistant cell lines showed a greater capacity for DNA repair. The data support the conclusion that APEX1 and TEMS2 cells contain a human DNA repair gene.  相似文献   

19.
The abortive activity of topoisomerases can result in clastogenic and/or lethal DNA damage in which the topoisomerase is covalently linked to the 3'- or 5'-terminus of a DNA strand break. This type of DNA damage is implicated in chromosome translocations and neurological disease and underlies the clinical efficacy of an important class of anticancer topoisomerase 'poisons'. Tyrosyl DNA phosphodiesterase-1 protects cells from abortive topoisomerase I (Top1) activity by hydrolyzing the 3'-phosphotyrosyl bond that links Top1 to a DNA strand break and is currently the only known human enzyme that displays this activity in cells. Recently, we identified a second tyrosyl DNA phosphodiesterase (TDP2; aka TTRAP/EAPII) that possesses weak 3'-tyrosyl DNA phosphodiesterase (3'-TDP) activity, in vitro. Herein, we have examined whether TDP2 contributes to the repair of Top1-mediated DNA breaks by deleting Tdp1 and Tdp2 separately and together in murine and avian cells. We show that while deletion of Tdp1 in wild-type DT40 cells and mouse embryonic fibroblasts decreases DNA strand break repair rates and cellular survival in response to Top1-induced DNA damage, deletion of Tdp2 does not. However, deletion of both Tdp1 and Tdp2 reduces rates of DNA strand break repair and cell survival below that observed in Tdp1(-)(/)(-) cells, suggesting that Tdp2 contributes to cellular 3'-TDP activity in the absence of Tdp1. Consistent with this idea, over-expression of human TDP2 in Tdp1(-)(/)(-)/Tdp2(-)(/)(-)(/)(-) DT40 cells increases DNA strand break repair rates and cell survival above that observed in Tdp1(-)(/)(-) DT40 cells, suggesting that Tdp2 over-expression can partially complement the defect imposed by loss of Tdp1. Finally, mice lacking both Tdp1 and Tdp2 exhibit greater sensitivity to Top1 poisons than do mice lacking Tdp1 alone, further suggesting that Tdp2 contributes to the repair of Top1-mediated DNA damage in the absence of Tdp1. In contrast, we failed to detect a contribution for Tdp1 to repair Top2-mediated damage. Together, our data suggest that Tdp1 and Tdp2 fulfil overlapping roles following Top1-induced DNA damage, but not following Top2-induced DNA damage, in vivo.  相似文献   

20.
Recovery of the cell cycle in cells A 431 and in human embryo fibroblasts (EFH) differs much. Unlike EFH, A 431 cells have: 1) synchronized exit of cells from G1 into S phase after 5 Gr irradiation; 2) G2-block; 3) much less manifestation of these two phenomena in the presence of EGF; 4) a lesser effectiveness of the repair of DNA single-strand breaks. EGF stimulation of the repair of radiation-induced DNA lesions, SSB in particular, may be of great importance for the postirradiation cell cycle recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号