首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selected amino acid residues in chicken nerve growth factor (NGF) were replaced by site-directed mutagenesis. Mutated NGF sequences were transiently expressed in COS cells and the yield of NGF protein in conditioned medium was quantified by Western blotting. Binding of each mutant to NGF receptors on PC12 cells was evaluated in a competition assay. The biological activity was determined by measuring stimulation of neurite outgrowth from chick sympathetic ganglia. The residues homologous to the proposed receptor binding site of insulin (Ser18, Met19, Val21, Asp23) were substituted by Ala. Replacement of Ser18, Met19 and Asp23 did not affect NGF activity. Modification of Val21 notably reduced both receptor binding and biological activity, suggesting that this residue is important to retain a fully active NGF. The highly conserved Tyr51 and Arg99 were converted into Phe and Lys respectively, without changing the biological properties of the molecule. However, binding and biological activity were greatly impaired after the simultaneous replacement of both Arg99 and Arg102 by Gly. The three conserved Trp residues at positions 20, 75 and 98 were substituted by Phe. The Trp mutated proteins retained 15-60% of receptor binding and 40-80% of biological activity, indicating that the Trp residues are not essential for NGF activity. However, replacement of Trp20 significantly reduced the amount of NGF in the medium, suggesting that this residue may be important for protein stability.  相似文献   

2.
Nerve growth factor (NGF), like many other growth factors and hormones, binds to two different receptor molecules on responsive cells. The product of the proto-oncogene trk, p140trk, is a tyrosine kinase receptor that has been identified as a signal-transducing receptor for NGF, while the role of the low affinity NGF receptor, p75NGFR, in signal transduction is less clear. The crystal structure of NGF has recently been determined, although structures involved in receptor binding and biological activity are unknown. Here we show that Lys-32, Lys-34, and Lys-95 form a positively charged interface involved in binding to p75NGFR. Simultaneous modification of Lys-32 with either of the two other lysines resulted in loss of binding to p75NGFR. Despite the lack of binding to p75NGFR, these mutants retained binding to p140trk and biological activity, demonstrating a functional dissociation between the two NGF receptors.  相似文献   

3.
Expression and structure of the human NGF receptor   总被引:91,自引:0,他引:91  
The nucleotide sequence for the human nerve growth factor (NGF) receptor has been determined. The 3.8 kb receptor mRNA encodes a 427 amino acid protein containing a 28 amino acid signal peptide, an extracellular domain containing four 40 amino acid repeats with six cysteine residues at conserved positions followed by a serine/threonine-rich region, a single transmembrane domain, and a 155 amino acid cytoplasmic domain. The sequence of the extracellular domain of the NGF receptor predicts a highly ordered structure containing a negatively charged region that may serve as the ligand-binding site. This domain is conserved through evolution. Transfection of a full-length cDNA in mouse fibroblasts results in stable expression of NGF receptors that are recognized by monoclonal antibodies to the human NGF receptor and that bind [125I]NGF.  相似文献   

4.
G Weskamp  L F Reichardt 《Neuron》1991,6(4):649-663
Trophic factors, such as NGF, regulate survival and differentiation of many classes of neurons by binding specific receptors. Two types of NGF receptors have been identified, which bind NGF with low and high affinity. The latter mediates the major biological actions of NGF. To determine the relationship between these two receptor types, polyclonal antibodies to the low affinity receptor have been prepared and used in ligand-binding, ligand-cross-linking, and biological assays. These antibodies eliminated binding of NGF to low affinity receptors and to one class of high affinity receptors, but did not prevent binding to a second class of high affinity receptors. The same antibodies did not inhibit NGF-stimulated neuronal survival or neurite outgrowth. Thus, a biologically important class of high affinity NGF receptors is antigenically distinct from the low affinity receptor and may be encoded by a novel gene.  相似文献   

5.
The anti-nerve growth factor (NGF) monoclonal antibody αD11 is a potent antagonist that neutralizes the biological functions of its antigen in vivo. NGF antagonism is expected to be a highly effective and safe therapeutic approach in many pain states. A comprehensive functional and structural analysis of αD11 monoclonal antibody was carried out, showing its ability to neutralize NGF binding to either tropomyosine receptor kinase A (TrkA) or p75 receptors. The 3-D structure of the αD11 Fab fragment was solved at 1.7 Å resolution. A computational docking model of the αD11 Fab-NGF complex, based on epitope mapping using a pool of 44 NGF mutants and experimentally validated by small-angle X-ray scattering, provided the structural basis for identifying the residues involved in αD11 Fab binding. The present study pinpoints loop II of NGF to be an important structural determinant for NGF biological activity mediated by TrkA receptor.  相似文献   

6.
An involvement of protein tyrosine kinase in the transduction of the signals initiated by nerve growth factor (NGF) was investigated. A tyrosine kinase inhibitor, herbimycin, inhibited neurite outgrowth of rat pheochromocytoma PC12 cells induced by NGF but not that by dibutyryl-cAMP. Herbimycin and genistein blocked NGF-dependent activation of ras p21 whose essential function in neuronal differentiation has been reported. These observations suggested that tyrosine kinase activity is involved in the signaling pathways. K-252a, by contrast, inhibited NGF-induced but not EGF-dependent activation of ras p21. Tyrosine kinase activity of gp140trk, a constituent of NGF receptor, is activated by NGF for much a longer period compared to the activation of EGF receptor autokinase activity by EGF. We further demonstrated that autophosphorylation of gp140trk is selectively inhibited by K-252a.  相似文献   

7.
Neurotrophin-mediated cell survival and differentiation of vertebrate neurons is caused by ligand-specific binding to the Trk family of tyrosine kinase receptors. However, sites in the neurotrophins responsible for the binding to Trk receptors and the mechanisms whereby this interaction results in receptor activation and biological activity are unknown. Here we show that in nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), discontinuous stretches of amino acid residues group together on one side of the neurotrophin dimer forming a continuous surface responsible for binding to and activation of TrkA and TrkB receptors. Two symmetrical surfaces are formed along the two-fold axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. Mutated neurotrophins inducing similar levels of receptor phosphorylation showed different biological activities, suggesting that structural differences in a ligand may result in dissimilar responses in a given tyrosine kinase receptor. Our results allowed us to combine structural elements from NGF, BDNF and neurotrophin-3 to engineer a pan-neurotrophin that efficiently activates all Trk receptors and displays multiple neurotrophic specificities.  相似文献   

8.
This article reports the results of a systematic investigation of the different types of antibodies produced in the course of a long-term immunization of rats with mouse nerve growth factor (NGF). We have characterized three types of monoclonal antibodies, namely: (1) antibodies that bind to NGF and inhibit its binding to target cells and its biological activity in culture (type A); (2) antibodies that bind to and precipitate NGF but do not inhibit its binding to target cells or its biological activity (type B); (3) antibodies that fail to recognize NGF itself, but inhibit nonetheless its binding to target cells (type C). These antibodies bind to an antigen present on NGF target cells and not on rat fibroblasts lacking NGF receptor. They appear thus to be antiidiotypic antibodies directed against the NGF receptor, developed as a consequence of the long-term immunization with NGF.  相似文献   

9.
Nerve growth factor (NGF) interacts with a cell surface receptor on responsive neurons to initiate a series of cellular events leading to neuronal survival and/or differentiation. The first step in this process is the binding of NGF to a low affinity and/or a high affinity receptor. In the present report, we have studied the conformation and stability of recombinant receptor extracellular domain (RED) from the human low affinity receptor and the structural basis of its interaction with NGF. Circular dichroism (CD) studies indicate that the RED is primarily random coil in nature with little regular secondary structure. Thermal stability studies have shown that this irregular conformation is a specific structure that can undergo a reversible two-state thermal denaturation with a concomitant fluorescent and CD change. During heating at 100 degrees C for 15 min, the structure of RED is sufficiently unfolded for a reducing agent, dithiothreitol, to inactivate the receptor toward NGF binding and cross-linking. The complex formation between the RED and NGF has been examined by differential CD measurements, and we have shown that a small, reproducible change in conformation occurs in RED or NGF upon interaction. These results are interpreted in terms of the initiation of NGF cell surface binding and possible modes of signal transduction.  相似文献   

10.
Nerve growth factor (NGF) is the prototype of a family of neurotrophins that support important neuronal programs such as differentiation and survival of a subset of sympathetic, sensory, and brain neurons. NGF binds to two classes of cell surface receptors: p75LANR and p140TrkA. NGF binding to p140TrkA initiates the neuronal signaling pathway through activation of the tyrosine kinase activity, which subsequently results in a rapid signal transduction through a phosphorylation cascade. To examine this crucial signaling step in more detail, the TrkA extracellular domain polypeptide (TrkA-RED) was overexpressed in Sf21 insect cells and purified to homogeneity. The recombinant TrkA-RED is a 70 kDa acidic glycoprotein with a pI of 5.1, and mimics the intact TrkA receptor for NGF binding with a dissociation constant, Kd, of 2.9 nM. Thus, the recombinant TrkA-RED is functionally competent and can be used to elucidate the interaction of NGF and TrkA receptor. Circular dichroism difference spectra indicated that, upon association of NGF with TrkA-RED, a minor conformational change occurred to form a complex with decreased ordered secondary structure. Interaction between NGF and TrkA-RED was also demonstrated by size exclusion chromatography, light scattering, and chemical crosslinking with evidence for formation of a higher molecular weight complex consistent with a (TrkA-RED)2-(NGF dimer) complex. Association and dissociation rates of 5.6 x 10(5) M(-1) s(-1) and 1.6 x 10(-3) s(-1), respectively, were determined by biosensor technology. Thus, initiation of signaling may stem from NGF-induced receptor dimerization concomitant with a small conformational change.  相似文献   

11.
During adulthood, the neurotrophin Nerve Growth Factor (NGF) sensitizes nociceptors, thereby increasing the response to noxious stimuli. The relationship between NGF and pain is supported by genetic evidence: mutations in the NGF TrkA receptor in patients affected by an hereditary rare disease (Hereditary Sensory and Autonomic Neuropathy type IV, HSAN IV) determine a congenital form of severe pain insensitivity, with mental retardation, while a mutation in NGFB gene, leading to the aminoacid substitution R100W in mature NGF, determines a similar loss of pain perception, without overt cognitive neurological defects (HSAN V). The R100W mutation provokes a reduced processing of proNGF to mature NGF in cultured cells and a higher percentage of neurotrophin secreted is in the proNGF form. Moreover, using Surface Plasmon Resonance we showed that the R100W mutation does not affect NGF binding to TrkA, while it abolishes NGF binding to p75NTR receptors. However, it remains to be clarified whether the major impact of the mutation is on the biological function of proNGF or of mature NGF and to what extent the effects of the R100W mutation on the HSAN V clinical phenotype are developmental, or whether they reflect an impaired effectiveness of NGF to regulate and mediate nociceptive transmission in adult sensory neurons. Here we show that the R100 mutation selectively alters some of the signaling pathways activated downstream of TrkA NGF receptors. NGFR100 mutants maintain identical neurotrophic and neuroprotective properties in a variety of cell assays, while displaying a significantly reduced pain-inducing activity in vivo (n = 8–10 mice/group). We also show that proNGF has a significantly reduced nociceptive activity, with respect to NGF. Both sets of results jointly contribute to elucidating the mechanisms underlying the clinical HSAN V manifestations, and to clarifying which receptors and intracellular signaling cascades participate in the pain sensitizing action of NGF.  相似文献   

12.
An understanding of the structure-function relationship of nerve growth factor (NGF) requires precise knowledge of all the residues and regions that participate in NGF receptor binding, receptor activation, and biological activity. Seven recombinant human NGF mutants having alanine substituted for residues located either in the NGF dimer interface or beta-strand region were studied to determine the role of each amino acid residue in NGF biological activity. F86A, T91A, R100A, and R103A remained nearly full active with 61, 120, 91, and 73% of wild-type activity, respectively, in the PC12 cell bioassay. Hydrophobic core and dimer interface residues Y52, F53, and F54 were studied in more detail. Y52A and F54A were expressed in very low levels, suggesting that these two residues may be important for protein stability. Y52A retained full biological activity (91%). F53A had a 20- and 70-fold reduction in biological activity and TrkA phosphorylation, respectively, with only a 5- to 10-fold effect on TrkA binding and no effect on low-affinity receptor binding. F54A had significantly decreased TrkA phosphorylation and biological activity (40-fold). The results suggest that F53 and F54 may play a structural role in TrkA receptor activation subsequent to binding.  相似文献   

13.
We compared the receptor binding, antigenicity, biological activation, and cell-mediated proteolytic degradation properties of mouse nerve growth factor (mNGF) and human NGF (hNGF). The affinity of hNGF toward human NGF-receptor is greater than that of mNGF, but the affinity of mNGF toward rat NGF-receptor is greater than that of hNGF. Thus, the specificity of the interaction between NGF and its receptor resides both on the NGF and on its receptor. Using a group of anti-NGF monoclonal antibodies that competitively inhibit the binding of NGF to receptor, sites differing between mNGF and hNGF were detected. Together, these results indicate that the sites on hNGF and mNGF, responsible for binding to NGF-receptor, are similar but not identical. In comparing the relative abilities of mNGF and hNGF to stimulate a biological response in PC12 cells, we observed that mNGF was better at stimulating neurite outgrowth than was hNGF, consistent with the differences observed for receptor binding affinity. However, the ED50 for biological activation is approximately 100-fold lower than theK d for receptor occupancy, and, thus, the dose-response curve is not consistent with a simple activation proportional to receptor occupancy. The data are consistent with a model requiring a low-level threshold occupancy of NGF-receptor (K d=10–9 M) in order to stimulate full biological activity. Finally, we observed the degradation of NGF by PC12 cells. We found that the NGF molecule is significantly degraded via a receptor-mediated uptake mechanism. Together, the data provide insight into regions of the NGF molecule involved in contacts with the receptor leading to formation of the NGF: NGF-receptor complex. Additionally, they establish the link between occupancy of receptor and biological activation and the requirement for receptor-mediated uptake in order to degrade NGF proteolytically in cultured PC12 cells.  相似文献   

14.
15.
Previous experiments with purified mouse and bovine nerve growth factor (NGF) have shown that the biological activities of these two NGFs are identical, whereas the immunological cross-reactivity of antibodies produced against the two NGF molecules is very limited. This observation, together with the fact that antibodies to mouse NGF do not affect the development of sympathetic and sensory neurons in chick embryos, suggests that the domain of the NGF molecules responsible for the biological action has been highly conserved during evolution, whereas other domains determining the immunological properties were under less rigorous evolutionary constraint. The nucleotide sequences of bovine and chick NGF were determined from a cDNA clone prepared from mRNA of bovine seminal vesicles and from cloned chick genomic DNA, and the amino acid sequences deduced therefrom were compared with the available sequences of mouse and human NGF. All six cysteine residues were conserved in agreement with the previous finding that the biological activity of NGF is conformation-dependent requiring intact disulfide bridges. Amino acid changes are mainly confined to hydrophilic regions expected to be potential antigenic determinants, thus providing an explanation for the poor immunological cross-reactivities between the different NGFs. One single hydrophilic region is conserved in all NGFs and this region could be involved in the biological activity. The carboxy termini of bovine and chick NGF differ from that of mouse NGF, the changes in the amino acid sequences suggest that chick and bovine NGF are probably not processed by the gamma-subunit and that no 7S complex can be formed as in the mouse submandibular gland.  相似文献   

16.
The aim of this work was to test whether growth factors such as basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) undergo autophosphorylation and whether this affects their biological activity. Incubation of those growth factors with [gamma-(32)P]ATP resulted in phosphorylation in vitro. The phosphate bond was resistant to alkaline pH, yet acid-labile. Addition of alkaline phosphatase resulted in time and protein dependent dephosphorylation. Concomitantly, alkaline phosphatase abolished the neuroprotective effect of those growth factors upon oxygen and glucose deprivation and upon staurosporine-induced cell death. For those studies, we were using primary cultures of cortical and hippocampal neurons from embryonic and neonatal rats. Incubation of bFGF with non-hydrolyzable ATP-gammaS resulted in phosphorylation and in neuroprotection resistant to alkaline phosphatase. We conclude that bFGF, NGF and BDNF undergo autophosphorylation on site(s) other than serine, threonine, tyrosine and/or ATP-binding, and that this binding of phosphate is essential for neuroprotection in vivo.  相似文献   

17.
18.
Structure and developmental expression of the chicken NGF receptor   总被引:7,自引:0,他引:7  
The nucleotide and deduced amino acid sequence of a cDNA clone of the chicken NGF receptor (NGFR) is reported and is compared with sequences of mammalian NGF receptors. A model is presented in which monodentate or bidentate binding of NGF dimers to repeated cysteine-rich sequence elements of the receptor yields low- or high-affinity NGF binding, respectively. In situ hybridization is used to characterize expression of NGFR in developing chick from 40 hr to 10 days of embryogenesis. NGFR mRNA expression is detected in premigratory neural crest cells, in epibranchial placode cells, and in all sensory, sympathetic and parasympathetic derivatives of these structures. In the embryonic CNS, NGFR mRNA is detected in the mantle zone but not the periventricular germinal zone throughout most of the neural tube. By Embryonic Day 8, NGFR mRNA is detected in a substantial fraction of cells in every brain region, with highest levels present in developing motor neurons. NGFR mRNA also is transiently expressed in many mesenchymal cell populations including cells in branchial arch, sclerotome, muscle anlagen, and feather follicles. The functional significance of wide-spread embryonic expression of the NGF receptor is discussed.  相似文献   

19.
Two types of nerve growth factor (NGF) receptors have been described: high affinity (class I) and low affinity (class II). Biological responses to NGF are thought to be mediated by class I receptors, whereas the role of class II receptors is less clear. While some neuronal cells express both receptor types, only class II receptors have been detected on glial cells. Two glial cell lines, peripheral Schwannoma D6P2T and central 33B glioma cells, were employed to investigate the properties of class II receptors in the absence of class I receptors. These cell lines were found to express NGF receptors identified as class II by a low nanomolar dissociation constant, rapid dissociation kinetics at 4 degrees C, and trypsin sensitivity. The receptor was found to bind brain-derived neurotrophic factor with similar affinity as NGF. The responsible binding molecule appeared in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a heterogeneously glycosylated protein of 60-80 kDa with a tendency to aggregate. All receptor bands affinity-labeled with radioiodinated NGF were immunoprecipitated with anti-p75NGFR antibody, but not with anti-p140prototrk antiserum. In these cells, which express p75NGFR as only NGF receptor, a time- and temperature-dependent appearance of a nondisplaceable, trypsin-resistant, acid wash-stable ligand fraction, followed by an increase of trichloroacetic acid-soluble radiolabel in the medium was observed. This sequestration resembled receptor-mediated internalization with subsequent degradation of NGF. Whether this ligand processing indicates a functional role of p75NGFR in glial cells remains to be shown.  相似文献   

20.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号