首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of citric and glutamic acids by extracts of Chloropseudomonas ethylicum was studied with labeled precursors. When acetyl-coenzyme A-1-(14)C was used as substrate, only 0.1% of the total radioactivity was found in the C-5 position of citric acid; whereas, with oxalacetate-4-(14)C as substrate, 100% of the total radioactivity was found in C-5. These results demonstrated that the Chloropseudomonas citrate synthetase had an absolute stereospecificity, identical to that of the pig heart synthetase. The distribution of radioactivity in the glutamic acid synthesized from acetyl-coenzyme A-1-(14)C was 0% in C-1 and 94.0% in C-5; whereas the glutamic acid formed from oxalacetate-4-(14)C contained 89.6% in C-1 and 0.5% in C-5. This distribution is entirely consistent with the biosynthesis of glutamic acid from citric acid via aconitase, d(s)-isocitrate, and l-glutamate dehydrogenases. The presence of l-glutamate dehydrogenase in extracts was demonstrated. The stereospecificity of the citrate synthetase and the pattern of glutamate labeling further establish that the aconitase of Chloropseudomonas is completely stereospecific.  相似文献   

2.
Some properties of a d-glutamic acid auxotroph of Escherichia coli B were studied. The mutant cells lysed in the absence of d-glutamic acid. Murein synthesis was impaired, accompanied by accumulation of uridine-5'-diphosphate-N-acetyl-muramyl-l-alanine (UDP-MurNac-l-Ala), as was shown by incubation of the mutant cells in a cell wall medium containing l-[(14)C]alanine. After incubation of the parental strain in a cell wall medium containing l-[(14)C]glutamic acid, the acid-precipitable radioactivity was lysozyme degradable to a large extent. Radioactive UDP-MurNac-pentapeptide was isolated from the l-[(14)C]glutamic acid-labeled parental cells. After hydrolysis, the label was exclusively present in glutamic acid, the majority of which had the stereo-isomeric d-configuration. Compared to the parent the mutant incorporated less l-[(14)C]glutamic acid from the wall medium into acid-precipitable material. Lysozyme degraded a smaller percentage of the acid-precipitable material of the mutant than of that of the parent. No radioactive uridine nucleotide precursors could be isolated from the mutant under these conditions. Attempts to identify the enzymatic defect in this mutant were not successful. The activity of UDP-MurNac-l-Ala:d-glutamic acid ligase (ADP; EC 6.3.2.9) (d-glutamic acid adding enzyme) is not affected by the mutation. Possible pathways for d-glutamic acid biosynthesis in E. coli B are discussed.  相似文献   

3.
Cell-free extracts of various strains of Escherichia coli synthesize the menaquinone biosynthetic intermediate o-succinylbenzoic acid (OSB) when supplied with chorismic acid, 2-ketoglutaric acid, and thiamine pyrophosphate (TPP). To assay for OSB synthesis, 2-[U-14C]ketoglutaric acid was used as substrate, and the synthesized OSB was examined by radiogas chromatography (as the dimethyl ester). [U-14C]Shikimic acid also gave rise to radioactive OSB if the cofactors necessary for enzymatic conversion to chorismic acid were added. Use of 2-[1-14C]ketoglutaric acid does not give rise to labeled OSB. In the absence of TPP during the incubations, OSB synthesis was much reduced; these observations are consistent with the proposed role for the succinic semialdehyde-TPP anion as the reagent adding to chorismic acid. Extracts of cells from menC and menD mutants did not form OSB separately, but did so in combination. There was evidence for formation of a product, X, by extracts of a menC mutant incubated with chorismic acid, TPP, and 2-ketoglutaric acid; X was converted to OSB by extracts of a menD mutant. It appears that the intermediate, X, is formed by one gene product and converted to OSB by the second gene product.  相似文献   

4.
The pathway of arginine biosynthesis in Streptococcus bovis was studied by radioactive tracer techniques. Cells were grown anaerobically with (14)CO(2) in a synthetic medium containing NH(4) (+) as the sole nitrogen source except for the trace present in nitrogen-containing vitamins. The protein fraction isolated from the labeled cells was acid-hydrolyzed, and (14)C-arginine was isolated from the protein hydrolysate by ion-exchange chromatography. The carboxyl carbon of the isolated arginine was removed with arginine decarboxylase, and the guanidino carbon was removed by simultaneous arginase-urease degradation. By manometric measurement and liquid scintillation counting of the CO(2) released by enzymatic degradation, 50% of the label was found in the carboxyl carbon and 50% in the guanidino carbon. Specific radioactivity determinations indicated that growth on (14)CO(2) resulted in twice as much label in arginine as with aspartate, glutamate, or lysine. These results are consistent with a glutamate --> ornithine --> citrulline pathway of arginine biosynthesis in S. bovis and provide further evidence for the synthesis of glutamate via the tricarboxylic acid cycle reactions from citrate through alpha-ketoglutarate.  相似文献   

5.
Experiments with growing cells and with cell-free extracts of Bacteroides ruminicola indicate that this anaerobic bacterium can synthesize alpha-ketoglutarate by a reductive carboxylation of succinate. When the organism was grown in medium containing succinate-1,4-(14)C, most of the radioactivity in cells was in the protein fraction and most of the (14)C in protein was in the glutamic acid family of amino acids (glutamate, proline, and arginine). When unlabeled succinate was added to culture medium containing glucose-U-(14)C, incorporation of radioactivity into the glutamic acid family of amino acids was greatly reduced. This supports the concept that succinate is an intermediate in synthesis of alpha-ketoglutarate. Cell-free extracts of the organism incubated with succinate-1,4-(14)C incorporated (14)C into amino acids and most of this was found in glutamate. The cofactors which stimulate glutamate synthesis from succinate by extracts from these cells appear to be similar to the factors that have been demonstrated with extracts from photosynthetic bacteria. The position of label in glutamate synthesized from succinate-1,4-(14)C, the probable absence of isocitric dehydrogenase, and studies with labeled citrate and with inhibitors of citric acid cycle enzymes support the concept of a reductive carboxylation of succinate as the only, or at least a major, mechanism for synthesis of alpha-ketoglutarate in this organism. This appears to be the first evidence for a net synthesis of alpha-ketoglutarate by this reaction in a nonphotosynthetic heterotrophic organism.  相似文献   

6.
Designing new drugs that inhibit the biosynthesis of the D-arabinan moiety of the mycobacterial cell wall arabinogalactan is one important basic approach for treatment of mycobacterial diseases. However, the biosynthetic origin of the D-arabinosyl monosaccharide residues themselves is not known. To obtain information on this issue, mycobacteria growing in culture were fed glucose labeled with 14C or 3H in specific positions. The resulting radiolabeled cell walls were isolated and hydrolyzed, the arabinose and galactose were separated by high-pressure liquid chromatography, and the radioactivity in each sugar was determined. [U-14C]glucose, [6-3H]glucose, [6-14C]glucose, and [1-14C]glucose were all converted to cell wall arabinosyl residues with equal retention of radioactivity. The positions of the labeled atoms in the arabinose made from [1-14C]glucose and [6-3H]glucose were shown to be C-1 and H-5, respectively. These results demonstrated that the arabinose carbon skeleton is formed via the nonoxidative pentose shunt and not via hexose decarboxylation or via triose condensations. Since the pentose shunt product, ribulose-5-phosphate, is converted to arabinose-5-phosphate as the first step in 3-keto-D-manno-octulosonic acid biosynthesis by gram-negative bacteria, such a conversion was then searched for in mycobacteria. However, cell-free enzymatic analysis using both phosphorous nuclear magnetic resonance spectrometry and colorimetric methods failed to detect the conversion. Thus, the conversion of the pentose shunt intermediates to the D-arabino stereochemistry is not via the expected isomerase but rather must occur via novel metabolic transformations.  相似文献   

7.
This article deals with the elucidation of the steroid-binding site of human sex hormone-binding globulin (SHBG). 17 beta-Bromoacetoxydihydrotesterone (BA-DHT) reacted with highly purified SHBG in a time-dependent and irreversible fashion. The interaction could be totally inhibited by the simultaneous addition of an excess of dihydrotesterone. At the completion of the reaction, the molar ratio of BA-DHT to SHBG was approximately unity. SHBG was affinity labeled with [14C]BA-DHT and submitted to acid hydrolysis. The released amino acids were evaluated on high performance liquid chromatography, and virtually all of the 14C was identified as 3-[14C]carboxymethylhistidine. Furthermore, [14C]BA-DHT-labeled SHBG was digested with trypsin, followed by isolation of the released tryptic peptides by reverse-phase high performance liquid chromatography. The 14C was localized to a single tryptic peptide. It contained 2' histidyl residues, corresponding to residues 235 and 251 in the known amino acid sequence of SHBG. Although most of the 3-[14C]carboxymethylhistidine, or its phenylthiohydantoin derivative, was trapped on the filter of the amino acid sequenator, sufficient radioactivity emerged to identify histidyl residue 235 as the labeled amino acid.  相似文献   

8.
A barley (Hordeum vulgare L.) mutant, R5201, selected for resistance to 4? mM trans-4-hydroxyproline had a 3–6 fold increase in the soluble proline content of the leaf compared with the parent cultivar, Maris Mink. The mutant converted more [U-4C]glutamic acid to free proline in the leaves than Maris Mink but incorporation into protein proline was similar. Incorporation of radioactivity into proline was inhibited by exogenous proline more in Maris Mink than R5201, suggesting that feedback inhibition of proline biosynthesis is relaxed, but not absent in the mutant. When [1-14C]ornithine was the precursor, both R5201 and Maris Mink incorporated similar small amounts of label into soluble and protein proline. More protein proline was formed by both genotypes from labelled glutamic acid than from labelled ornithine. There may exist two routes of proline formation, where the glutamate pathway is synthetic and the ornithine pathway is catabolic.  相似文献   

9.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

10.
Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine.  相似文献   

11.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

12.
The uptake and utilization of glutamic acid in the biosynthesis of ochratoxin A by Aspergillus ochraceus were studied. Uniformly labeled L[14C]glutamic acid was incorporated into both the phenylalanine and isocoumarin moieties of ochratoxin A. Penicillic acid was also labeled. During the early stages of development, the amino acid was used mainly for the synthesis of ribonucleic acid and protein. A portion of glutamic acid was oxidized and was recovered as metabolic 14CO-2. The initial uptake velocity of glutamic acid decreased with age and was pH and temperature dependent. No relationship was found between the initial uptake velocities and ochratoxin A biosynthesis.  相似文献   

13.
1. [26-(14)C]- and [4-(14)C]-Cholesterol were incubated with liver mitochondria from normal and thyroxine-treated rats, and the radioactivity was measured in the carbon dioxide evolved during the incubation, in a butanol extract of the incubation mixture and in a volatile fraction containing substances of low molecular weight derived from the side chain of cholesterol. The butanol extract was separated by paper chromatography into three radioactive fractions, one of which contained the steroids more polar than cholesterol. 2. The butanol extract from incubations with [4-(14)C]cholesterol contained a radioactive substance moving with the same R(F) as cholic acid on thin-layer chromatography. 3. After incubation with [26-(14)C]-cholesterol, 60-80% of the radioactivity extracted by steam-distillation of the incubation mixture at acid pH was recovered as [(14)C]propionic acid. 4. In the presence of [26-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced more radioactivity in carbon dioxide and in the volatile fraction, and less radioactivity in the fraction containing the polar steroids, than did mitochondria from normal rats. In the presence of [4-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced the same amount of radioactivity in the polar steroids as did normal mitochondria. 5. Thyroxine treatment had no effect on the capacity of the mitochondria to oxidize propionate to carbon dioxide. 6. These results are best explained by supposing that thyroxine stimulates a rate-limiting reaction leading to the cleavage of the side chain of cholesterol, but has little or no influence on the hydroxylations of the ring system or on the oxidation of the C(3) fragment removed from the side chain.  相似文献   

14.
The de novo biosynthesis of 6,9,12-linolenic acid, 11,14-eicosadienoic acid, 5,11,14-eicosatrienoic acid, and arachidonic acid was demonstrated in adult female cockroaches, Periplaneta americana. These four polyunsaturated fatty acids (PUFA) were present primarily in the phospholipid (PL) fraction of both males and females. They were purified by AgNO3 thin-layer chromatography and high pressure liquid chromatography. The double bond positions of the major isomer of eicosatrienoic acid were shown to be at the delta 5,11,14 positions by gas chromatography-mass spectrometry (GC-MS) of both methoxy and epoxide derivatives and gas-liquid chromatography (GLC) and GC-MS of ozonolysis products. The other PUFAs cochromatographed with standards on both packed and capillary GLC columns. The in vivo incorporation of [1-14C]acetate into 5,11,14-eicosatrienoic acid, 11,14-eicosadienoic acid, 6,9,12-linolenic acid, and arachidonic acid was demonstrated by radio-GLC and radio-HPLC and for 5,11,14-eicosatrienoic acid by radio-GLC of ozonolysis products. The latter technique clearly demonstrated that the entire eicosatrienoic acid molecule was labeled. Thoracic tissue contained the highest amount of radiolabeled 5,11,14-eicosatrienoic acid (1.6% of total radioactivity incorporated into PL) while radiolabeled 11,14-eicosadienoic acid was found primarily in abdominal epidermal tissue (2% of total radioactivity incorporated into PL). Radiolabeled arachidonic and 6,9,12-linolenic acids comprised 0.1 and 0.02%, respectively, of the total radioactivity in the PL fraction. These data document the de novo biosynthesis of di-, tri-, and tetraunsaturated fatty acids in the American cockroach, and indicate that this animal can desaturate on both sides of the delta 9 double bond of oleic acid.  相似文献   

15.
The mitochondrial F1-ATPase is irreversibly inactivated by the adenine nucleotide analogue, p-fluorosulfonylbenzoyl-5'-adenosine. This inactivation is partly prevented by the presence of bound adenine nucleotides. Inactivations of the ATPase with p-fluorosulfonyl[14C]benzoyl-5'-adenosine were most efficiently accomplished with the nucleotide-free enzyme at pH 7.0, in a buffer containing 20% glycerol. Under these conditions, 4.2 g atoms of 14C are incorporated per 350,000 g of enzyme when the ATPase is inactivated by 90% by its reaction with 2 mM p-fluorosulfonyl[14C]benzoyl-5'-adenosine. Isolation of the component polypeptide chains of the labeled ATPase showed that all of the radioactivity was associated with the two largest subunits. The isolated alpha subunit contained 0.45 g atom of 14C/mol and the isolated beta subunit contained 0.88 g atom of 14C/mol. Hence, the inactivation can be correlated with the incorporation of 14C into the beta subunit. This suggests that the hydrolytic site of the enzyme resides on this subunit. The majority of the radioactivity in a tryptic digest of labeled beta subunit is contained ina tryptic peptide that has the following amino acid sequence: Ile-Met-Asp-Pro-Asn-Ile-Val-Gly-Ser-Glu-His-Tyr-Asp-Val-Ala-Arg, where Tyr is the radioactive derivative of the tyrosine residue that was sulfonylated during the inactivation.  相似文献   

16.
1. The peptidoglycan complex excreted in large amounts into the medium by the biotin-requiring mutant Brevibacterium divaricatum NRRL-2311 incubated in the presence of penicillin for 1 h has been investigated. A convenient isolation procedure with high yield for the pure monomeric unit from lysozyme digest of the accumulated polymer is described. 2. It is shown that the released peptidoglycan possesses the linear uncross-linked structure made of repeating disaccharide-pentapeptide unit [GlcNAc-MurNac-Ala-D-Glyn(meso-DAP-D-Ala-D-Ala)] which was isolated by stepwise gel filtration and fractionation of the digestion mixture in 10-mg quantities. Evidence that the minor digestion product of accumulated peptidoglycan possesses the glycan-linked dimer structure is given. Under conditions of beta-elimination, the monomeric unit yielded a lactylpentapeptide which was isolated in pure form by gel filtration. 3. The monomer unit originating from the cultures to which L-[U-14C]glutamic acid was added simultaneously with penicillin incorporated the label exclusively in the peptide chain, whereas that labeled from E11-14C]acetate as the precursor contained radioactivity in both the peptide chain (53%) and N-acetylamino groups (47%) of the glycan portion.  相似文献   

17.
Pigment mutant C-2A′ of the unicellular green alga Scenedesmus obliquus develops only traces of chlorophyll and has no detectable amount of δ-aminolevulinic acid (ALA) when grown in the dark. In light it develops ALA and in the presence of levulinic acid (LA), a competitive inhibitor of ALA dehydratase, it accumulates 0.18 mmoles of ALA per 10 microliters of packed cell volume per 12 hours. This amount could be increased up to 15 times by feeding precursors and cofactors.

Incubation with [U-14C]glutamate, [1-14C]glutamate, and [2-14C]glycine yielded significantly labeled ALA, whereas [1-14C]glycine did not label the ALA specifically. Thus, two pathways using either glycine/succinyl-coenzyme A or incorporating the whole C-5-skeleton of glutamate into ALA are present in this alga. The efficiency of the glycine/succinyl-coenzyme A pathway seems to be three times higher than that of the glutamate pathway. Incubation with [5-14C]2-ketoglutarate, which can serve both pathways as a precursor, resulted in radioactivity of ALA as high as the sum of both labeling with [1-14C]glutamate and [2-14C]glycine.

Since the newly synthesized chlorophyll was radioactive regardless of labeled substrate employed, both pathways culminate in chlorophyll formation.

  相似文献   

18.
The specific radioactivity of urinary hippurate glycine was determined after injecting guinea pigs with benzoate and either dl-[2-(14)C]glutamate or dl-[5-(14)C]glutamate. The isotope dilution factor for the formation of [(14)C]glycine was significantly greater (30%) with C-2 labelled glutamate. With either form of labelled glutamate the hippurate glycine was largely carboxyl-group labelled. The observations suggest a route for the incorporation of glutamate carbon into glycine that involves C-5 but not C-2. A hypothesis for glycine biosynthesis from l-glutamate is advanced, consistent with these findings, that includes conversion of l-glutamate to 4-hydroxy-2-oxoglutarate, the scission of the latter to glyoxylate and pyruvate, and the formation of glycine by transamination.  相似文献   

19.
delta-Aminolevulinic acid (ALA), the first committed precursor to the tetrapyrrole components of hemes and chlorophylls, is synthesized by two different routes in the photosynthetic phytoflagellate Euglena gracilis: directly from glutamate, mediated by a 5-carbon pathway, and via condensation of glycine and succinyl-CoA, catalyzed by the enzyme ALA synthase. The physiological roles of the two pathways were determined by administration of specifically 14C-labeled ALA precursors to cultures growing under different physiological conditions. Relative activities of the ALA synthase and 5-carbon pathways were monitored by incorporation of radioactivity from [2-14C] glycine and [1-14C]glutamate into highly purified protoheme, heme a and chlorophyll a derivatives. Wild type cells grown photoautotrophically or photoheterotrophically synthesized chlorophyll and incorporated radioactivity from [1-14C]glutamate into the tetrapyrrole nucleus of the pigment. [2-14C]Glycine was incorporated primarily into the nontetrapyrrole-derived portions of chlorophyll. In the same cultures both [2-14C]glycine and [1-14C]glutamate were efficiently incorporated into protoheme, while only [2-14C] glycine was incorporated into heme a. In dark-grown wild type or light-grown aplastidic cells, no chlorophyll was formed, and both protoheme and heme a were labeled exclusively from [2-14C]glycine. These results indicate: (a) ALA synthase and the 5-carbon pathway operate simultaneously in growing green cells; (b) the 5-carbon pathway provides ALA for chloroplast protoheme and chlorophyll, and is associated with chloroplast development; (c) ALA synthase provides ALA only for nonplastid heme biosynthesis; and (d) the two ALA pathways are separately compartmentalized along with complete sets of enzymes for subsequent tetrapyrrole synthesis from each ALA pool. The protoheme that was synthesized from [1-14C] glutamate had a higher specific radioactivity than chlorophyll synthesized from the same precursor. This result together with calculated specific radioactivities of the products synthesized during the incubation period, suggest that both protoheme and heme a undergo metabolic turnover.  相似文献   

20.
The aim of the work reported here was to ascertain that the patterns of labeling seen in isolated bacteroids also occurred in bacteroids in intact nodules and to observe early metabolic events following exposure of intact nodules to 14CO2. Intact nodules of soybean (Glycine max L. Merr. cv Ripley) inoculated with Bradyrhizobium japonicum USDA 110 and pea (Pisum sativum L. cv Progress 9) inoculated with Rhizobium leguminosarum bv viciae isolate 128C53 were detached and immediately fed 14CO2 for 1 to 6 min. Bacteroids were purified from these nodules in 5 to 7 min after the feeding period. In the cytosol from both soybean and pea nodules, malate had the highest radioactivity, followed by citrate and aspartate. In peas, asparagine labeling equaled that of aspartate. In B. japonicum bacteroids, malate was the most rapidly labeled compound, and the rate of glutamate labeling was 67% of the rate of malate labeling. Aspartate and alanine were the next most rapidly labeled compounds. R. leguminosarum bacteroids had very low amounts of 14C and, after a 1-min feeding, malate contained 90% of the radioactivity in the organic acid fraction. Only a trace of activity was found in aspartate, whereas the rate of glutamate and alanine labeling approached that of malate after 6 min of feeding. Under the conditions studied, malate was the major form of labeled carbon supplied to both types of bacteroids. These results with intact nodules confirm our earlier results with isolated bacteroids, which showed that a significant proportion of provided labeled substrate, such as malate, is diverted to glutamate. This supports the conclusion that microaerobic conditions in nodules influence carbon metabolism in bacteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号