首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light, controls the “blueprint” for chloroplast development, but at high intensities is toxic to the chloroplast. Excessive light intensities inhibit primarily photosystem II electron transport. This results in generation of toxic singlet oxygen due to impairment of electron transport on the acceptor side between pheophytin and QB -the secondary electron acceptor. High light stress also impairs electron transport on the donor side of photosystem II generating highly oxidizing species Z+ and P680+. A conformationsl change in the photosystem II reaction centre protein Dl affecting its QB-binding site is involved in turning the damaged protein into a substrate for proteolysis. The evidence indicates that the degradation of D1 is an enzymatic process and the protease that degrades D1 protein has been shown to be a serine protease Although there is evidence to indicate that the chlorophyll a-protein complex CP43 acts as a serine-type protease degrading Dl, the observed degradation of Dl protein in photosystem II reaction centre particlesin vitro argues against the involvement of CP43 in Dl degradation. Besides the degradation during high light stress of Dl, and to a lesser extent D2-the other reaction centre protein, CP43 and CP29 have also been shown to undergo degradation. In an oxygenic environment, Dl is cleaved from its N-and C-termini and the disassembly of the photosystem II complex involves simultaneous release of manganese and three extrinsic proteins involved in oxygen evolution. It is known that protein with PEST sequences are subject to degradation; D1 protein contains a PEST sequence adjacent to the site of cleavage on the outer side of thylakoid membrane between helices IV and V. The molecular processes of “triggering” of Dl for proteolytic degradation are not clearly understood. The changes in structural organization of photosystem II due to generation of oxy-radicals and other highly oxidizing species have also not been resolved. Whether CP43 or a component of the photosystem II reaction centre itself (Dl. D2 or cy1 b559 subunits), which may be responsible for degradation of Dl, is also subject to light modification to become an active protease, is also not known. The identity of proteases degrading Dl, LHCII and CP43 and C29 remains to be established  相似文献   

2.
Bertil Andersson  Jan M. Anderson   《BBA》1980,593(2):427-440
The lateral distribution of the main chlorophyll-protein complexes between appressed and non-appressed thylakoid membranes has been studied. The reaction centre complexes of Photosystems I and II and the light-harvesting complex have been resolved by an SDS-polyacrylamide gel electrophoretic method which permits most of the chlorophyll to remain protein-bound.

The analyses were applied to subchloroplast fractions shown to be derived from different thylakoid regions. Stroma thylakoids were separated from grana stacks by centrifugation following chloroplast disruption by press treatment or digitonin. Vesicles derived from the grana partitions were isolated by aqueous polymer two-phase partition. A substantial depletion in the amount of Photosystem I chlorophyll-protein complex and an enrichment in the Photosystem II reaction centre complex and the light-harvesting complex occurred in the appressed grana partition region. The high enrichment in this fraction compared to grana stack fractions derived from press or digitonin treatments, suggests that the grana Photosystem I is restricted mainly to the non-appressed grana end membranes and margins, and that the grana partitions possess mainly Photosystem II reaction centre complex and the light-harvesting complex.

In contrast, stroma thylakoids are highly enriched in the Photosystem I reaction centre complex. They possess also some 10–20% of the total Photosystem II reaction centre complex and the light-harvesting complex.

The ratio of light-harvesting complex to Photosystem II reaction centre complex is rather constant in all subchloroplast fractions suggesting a close association between these complexes. This was not so for the ratio of light-harvesting complex and the Photosystem I reaction centre complex.

The lateral heterogeneity in the distribution of the photosystems between appressed and non-appressed membranes must have a profound impact on current understanding of both the distribution of excitation energy and photosynthetic electron transport between the photosystems.  相似文献   


3.
Two-dimensional crystals of the reaction-centre-light-harvesting complex I (RC-LH1) of the purple non- sulfur bacterium Rhodospirillum rubrum have been formed from detergent-solubilized and purified protein complexes. Unstained samples of this intrinsic membrane protein complex have been analysed by electron cryomicroscopy (cryo EM). Projection maps were calculated to 8.5 A from two different crystal forms, and show a single reaction centre surrounded by 16 LH1 subunits in a ring of approximately 115 A diameter. Within each LH1 subunit, densities for the alpha- and beta-polypeptide chains are clearly resolved. In one crystal form the LH1 forms a circular ring, and in the other form the ring is significantly ellipsoidal. In each case, the reaction centre adopts preferred orientations, suggesting specific interactions between the reaction centre and LH1 subunits rather than a continuum of possible orientations with the antenna ring. This experimentally determined structure shows no evidence of any other protein components in the closed LH1 ring. The demonstration of circular or elliptical forms of LH1 indicates that this complex is likely to be flexible in the bacterial membrane.  相似文献   

4.
Summary Biological electron transfer is not well understood. The question is addressed in this contribution with reference to the so-called blue copper proteins, each of which has a single copper atom at its active centre. The redox activity (as probed by the electron self exchange reaction) of the Cu centre seems not to be affected. The electron self exchange reaction is known to proceed through His-117, and the hydrophobic patch is most important in the formation of the azurin/azurin encounter complex. Ph effects have not been observed on the three-dimensional structure ofA. denitrificans azurin, which may indicate that if present at all these have no direct physiological implications. Mutants are in process of construction.  相似文献   

5.
Copper effect on the protein composition of photosystem II   总被引:1,自引:0,他引:1  
We provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μ M CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.  相似文献   

6.
Photo-excitation of membrane-bound Rhodobacter sphaeroides reaction centres containing the mutation Ala M260 to Trp (AM260W) resulted in the accumulation of a radical pair state involving the photo-oxidised primary electron donor (P). This state had a lifetime of hundreds of milliseconds and its formation was inhibited by stigmatellin. The absence of the QA ubiquinone in the AM260W reaction centre suggests that this long-lived radical pair state is P+QB, although the exact reduction/protonation state of the QB quinone remains to be confirmed. The blockage of active branch (A-branch) electron transfer by the AM260W mutation implies that this P+QB state is formed by electron transfer along the so-called inactive branch (B-branch) of reaction centre cofactors. We discuss how further mutations may affect the yield of the P+QB state, including a double alanine mutation (EL212A/DL213A) that probably has a direct effect on the efficiency of the low yield electron transfer step from the anion of the B-branch bacteriopheophytin (HB) to the QB ubiquinone.  相似文献   

7.
Nigel K. Packham  Robert C. Ford 《BBA》1986,852(2-3):183-190
Addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p) to detergent-solubilised Photosystem II (PS II) particles results in the photo-oxidation of carotenoid and inhibition of the steady-state oxygen-evolution rate. It has been proposed that ANT2p may modify the water-splitting reactions by mediating the transfer of reducing equivalents from endogenous electron donors, such as carotenoid, to the S2 and S3 oxidation states of PS II. In this paper we present evidence indicating that ANT2p can interact with PS II at two separate loci. The water-splitting complex is shown to be the primary site of attack by ANT2p, since artificial electron donors, such as 1,5-diphenylcarbazide (DPC), can restore PS II photochemical activity by feeding reducing equivalents directly to the reaction centre. The ANT2p interaction at this site is light-intensity dependent. A second inhibitory site close to the reaction centre P-680 chlorophyll is detected at slightly higher ANT2p concentrations. The inhibition at this site is unaffected either by changes in the actinic light intensity or by the addition of electron donors. The flash-induced oxidation of carotenoid has an ANT2p concentration dependence and an insensitivity to DPC which suggests that it results from the inhibition of the reaction centre and not with that of the water-splitting complex.  相似文献   

8.
The dynamics of electron transfer in a membrane-bound Rhodobacter sphaeroides reaction centre containing a combination of four mutations were investigated by transient absorption spectroscopy. The reaction centre, named WAAH, has a mutation that causes the reaction centre to assemble without a Q(A) ubiquinone (Ala M260 to Trp), a mutation that causes the replacement of the H(A) bacteriopheophytin with a bacteriochlorophyll (Leu M214 to His) and two mutations that remove acidic groups close to the Q(B) ubiquinone (Glu L212 to Ala and Asp L213 to Ala). Previous work has shown that the Q(B) ubiquinone is reduced by electron transfer along the so-called inactive cofactor branch (B-branch) in the WAAH reaction centre (M.C. Wakeham, M.G. Goodwin, C. McKibbin, M.R. Jones, Photo-accumulation of the P(+)Q(B)(-) radical pair state in purple bacterial reaction centres that lack the Q(A) ubiquinone, FEBS Letters 540 (2003) 234-240). In the present study the dynamics of electron transfer in the membrane-bound WAAH reaction centre were studied by femtosecond transient absorption spectroscopy, and the data analysed using a compartmental model. The analysis indicates that the yield of Q(B) reduction via the B-branch is approximately 8% in the WAAH reaction centre, consistent with results from millisecond time-scale kinetic spectroscopy. Possible contributions to this yield of the constituent mutations in the WAAH reaction centre and the membrane environment of the complex are discussed.  相似文献   

9.
Abstract. The effect of photoinhibition on the activity of photosystem II (PSII) in spinach chloroplasts was investigated. Direct light-induced absorbance change measurements at 320 nm (Δ A 320) provided a measure of the PSII charge separation reaction and revealed that photoinhibition prevented the stable photoreduction of the primary quinone acceptor QA. Sensitivity to photoinhibition was substantially enhanced by treatment of thylakoids with NH2OH which extracts manganese from the H2O-splitting enzyme and prevents electron donation to the reaction centre. Incubation with 3-(3,4,-dichlorophenyl)-1,1-dimethylurea (DCMU) during light exposure did not affect the extent of photoinhibitory damage. The chlorophyll (Chl) b -less chlorina (2 mutant of barley displayed a significantly smaller light-harvesting antenna size of PSII (about 20% of that in wild type chloroplasts) and, simultaneously, a lower sensitivity to photoinhibition. These observations suggest that photoinhibition depends on the amount of light absorbed by PSII and that the process of photoinhibition is accelerated when electron donation to the reaction centre is prevented. It is postulated that the probability of photoinhibition is greater when excitation energy is trapped by P680+, the oxidized form of the PSII reaction centre. The results are discussed in terms of the D1/D2 heterodimer which contains the functional PSII components P680, pheophytin, QA and QB.  相似文献   

10.
We review recent advances in the study of the photosystem I reaction centre, following the determination of a spectacular 2.5 A resolution crystal structure for this complex of Synechococcus elongatus. Photosystem I is proving different to type II reaction centres in structure and organization, and the mechanism of transmembrane electron transfer, and is providing insights into the control of function in reaction centres that operate at very low redox potentials. The photosystem I complex of oxygenic organisms has a counterpart in non-oxygenic bacteria, the strictly anaerobic phototrophic green sulphur bacteria and heliobacteria. The most distinctive feature of these type I reaction centres is that they contain two copies of a large core polypeptide (i.e. a homodimer), rather than a heterodimeric arrangement of two related, but different, polypeptides as in the photosystem I complex. To compare the structural organization of the two forms of type I reaction centre, we have modelled the structure of the central region of the reaction centre from green sulphur bacteria, using sequence alignments and the structural coordinates of the S. elongatus Photosystem I complex. The outcome of these modelling studies is described, concentrating on regions of the type I reaction centre where important structure-function relationships have been demonstrated or inferred.  相似文献   

11.
《BBA》1987,890(2):160-168
Radiation inactivation studies on the functional size of electron-transport processes in the Photosystem I reaction-centre complex showed the following characteristics. (1) The molecular mass required for electron transport from P-700 to iron-sulphur centre A was below 40 kDa. (2) Independent inactivation of iron-sulphur centres A and B was observed indicating their location on separate polypeptides. (3) The molecular mass of the polypeptides containing iron-sulphur centres A and B were 5–10 kDa based on a linear electron-transfer chain or 15–20 and 5–10 kDa (centre B) based on a branched chain. (4) A reaction centre ‘core’ containing the electron carriers for electron transport from P-700 to iron-sulphur centre X was indicated. These observations are discussed in comparison to current ideas on the polypeptide composition of the Photosystem I reaction centre. It is concluded that the radiation inactivation technique did not measure the size of Photosystem I polypeptides binding chlorophyll accounting for the small overall target size. The observed functional size came mostly from inactivation of the iron-sulphur centres showing that they are located on separate polypeptides.  相似文献   

12.
X-ray structures have been determined for five mutant reaction centres from Rhodobacter sphaeroides, at resolutions varying between 3.4 Å and 2.3 Å. The aim was to examine the effects of mutagenesis of polar residues in the binding pocket of the reaction centre carotenoid. The number of water molecules identified in each structure depended on the resolution and completeness of the data. In a 2.3 Å structure for a WM115F/FM197R mutant reaction centre, two water molecules partially filled the cavity that was created when the tryptophan residue was replaced by a less bulky phenylalanine. Structures obtained for four reaction centres with mutations of polar residues in the carotenoid binding pocket failed to show any significant change in the structure of the reaction centre carotenoid. Low resolution data for a YM210W mutant reaction centre showed that the overall structure of this complex is well conserved. This finding is discussed in light of the intriguing spectroscopic properties of the YM210W mutant reaction centre, and an alternative pathway for transmembrane electron transfer identified in this mutant.  相似文献   

13.
Antenna and reaction centre complexes purified from photosynthetically-grown cells of Rhodopseudomonas sphaeroides have been mixed with cytoplasmic membranes prepared from an aerobically-grown bacteriochlorophyll-less mutant of Rp. sphaeroides (designated 01) in the presence of 1% sodium cholate. After removal of the cholate by dialysis, the dialysate was subjected to isopycnic centrifugation. Reconstituted cytochrome c2 photooxidation and cytochrome b photoreduction were demonstrated in a pigmented fraction recovered from the sucrose gradient, suggesting that the pigment-proteins were incorporated into the 01 membrane.

The fluorescence properties of the system were examined. The appearance of a variable component after the initial fast fluorescence rise indicated that energy transfer occurred between the antenna and reaction centre proteins in the presence of 01 membrane. The order in which the system was assembled was important. Reconstituted energy transfer with a pre-dialysed reaction centre-antenna complex was more effective than when all the components were mixed at once. Energy transfer was also reconstituted between added reaction centre protein and the endogenous antenna present in membranes from the pigmented, but aerobically-grown reaction centre-less mutant PM8dp of Rp. sphaeroides.

Preparations of 01 membranes reconstituted with reaction centre exhibited a light intensity dependent cytochrome c2 photooxidation. At low exciting light intensities, preparations containing reconstituted antenna protein in addition to reaction centres showed greater membrane cytochrome c2 photooxidation than preparations with the antenna omitted; this improvement was maximal when a pre-dialysed antenna-reaction centre complex was used.  相似文献   


14.
Room temperature single photon timing measurements on intact, Chlamydomonas reinhardtii cells at low excitation energies have been analysed using a four exponential kinetic model. Closing the PSII reaction centres produced two major variable lifetime and two minor constant lifetime components. The yield of each component mirrored the changes in lifetime. Such observations indicate the presence of well-connected PSII centres favoring excitation energy transfer. A Chlamydomonas mutant lacking PSII reaction centre proteins exhibited decay components equivalent to those seen at FM in the wild-type. A titration of in vivo fluorescence, in both the mutant and wild-type algae, using DNB, produced decay components similar to those seen on opening PSII reaction centres. Such observations indicate that the luminescence hypothesis for the origin of the long-lived lifetime component is not the case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea - DNB m,Dinitrobenzene - PSII photosystem II - RCII PSII recation centre - I- reduced pheophytin - QA primary stable electron ecceptor of PSII - Ch1 chlorophyl1 - LHCII light harvesting Ch1a/b protein complex of PSII - FO initial fluorescence level - FM maximum fluorescence level - FV variable fluorescence (FM-FO) - ps picosecond - ns nanosecond  相似文献   

15.
ESR studies at approximately 10 °K on the reaction centre complex of the photosynthetic bacterium Rhodopseudomonas spheroides (strain R26), have revealed bacteriochlorophyll triplet states and a component which has an ESR absorption centred at g = 1.82. The triplet-state bacteriochlorophyll is induced only in the light and is only detectable when the reaction-centre bacteriochlorophyll and its primary electron acceptor are reduced; the ESR triplet state signals are composed of both ESR absorption and ESR emission bands. The oxidation-reduction properties of the g = 1.82 component and its flash-induced kinetic behavior in relation to that of P870 are those expected for the primary electron acceptor in bacterial photosynthesis.  相似文献   

16.
Reconstitution of plastoquinone in the photosystem II D1/D2/cytochrome b-559 reaction centre complex, in the presence of the detergent Triton X-100, is reported. Illumination of the reconstituted system results in the reduction of cytochrome b-559, the process being partly herbicide-sensitive. In addition, the reconstitution of plastoquinone results in the ability of the isolated reaction centre to catalyse the photoreduction of 2,6-dichlorophenolindophenol in the presence of the exogenous electron donor diphenylcarbazide.  相似文献   

17.
In Amaranthus chloroplasts that are exposed to ultraviolet-B (UV-B) radiation, the electron flow from water to dichlorophenol indophenol (DCPIP) was inhibited, but the electron flow from reduced DCPIP to methyl viologen remains unaffected. Diphenylcarbazide was ineffective in restoring the activity of DCPIP Hill reaction in UV-B irradiated chloroplasts. Electron flow from water to ferricyanide or dichloro-dimethoxy- p -benzoquinone was inhibited to a degree similar to that of the DCPIP Hill reaction.
The rate of carotenoid photobleaching in the presence of carbonyl cyanide- m -chlorophenylhydrazone, an indicator of the photochemical reaction near the vicinity of reaction centre of photosystem II, was suppressed and paralleled with the inhibition of the DCPIP Hill reaction.
In the UV-B treated chloroplasts, the variable part of the fluorescence transient was diminished. Though the fluorescence yield was lowered by the UV-B radiation, addition of 3-(3,4-dichlorophenyl)-l, l-dimethylurea (DCMU) and/or sodium dithionite increased the emission markedly. With the increase in the dosage of UV-B irradiation, the time required to reach the steady state fluorescence level became longer in the absence of DCMU and shorter in the presence of DCMU. The kinetics of 520 nm absorbance change was markedly unaltered by the UV-B irradiation but its dark decay was prolonged. It is concluded that UV-B irradiation inactivates the photosystem II reaction centre.  相似文献   

18.
(1) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H +/2e- ratio was calculated to be close to 4.  相似文献   

19.
Kinetic analysis using pulsed electron paramagnetic resonance (EPR) of photosynthetic electron transfer in the photosystem I reaction centres of Synechocystis 6803, in wild-type Chlamydomonas reinhardtii, and in site directed mutants of the phylloquinone binding sites in C. reinhardtii, indicates that electron transfer from the reaction centre primary electron donor, P700, to the iron-sulphur centres, Fe-S(X/A/B), can occur through either the PsaA or PsaB side phylloquinone. At low temperature reaction centres are frozen in states which allow electron transfer on one side of the reaction centre only. A fraction always donates electrons to the PsaA side quinone, the remainder to the PsaB side.  相似文献   

20.
In anaerobic environments the first electron transfer in substrate-free P450cam is known to be thermodynamically unfavourable, but in the presence of dioxygen the reduction potential for the reaction shifts positively to make electron transfer thermodynamically favourable. Nevertheless a slower rate of electron transfer is observed in the substrate-free P450cam compared to substrate-bound P450cam. The ferric haem centre in substrate-free P450cam changes from six co-ordinate to five co-ordinate when reduced whereas in substrate-bound P450cam the iron centre remains five co-ordinate in both oxidation states. The slower rate of electron transfer in the substrate-free P450cam is therefore attributed to a larger reorganisation energy as predicted by Marcus theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号