首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lai JR  Epand RF  Weisblum B  Epand RM  Gellman SH 《Biochemistry》2006,45(51):15718-15730
Protegrins are short (16-18 residues) cationic peptides from porcine leukocytes that display potent, broad-spectrum antimicrobial activity. Protegrin-1 (PG-1), one of five natural homologues, adopts a rigid beta-hairpin structure that is stabilized by two disulfide bonds. We have previously employed the principles of beta-hairpin design to develop PG-1 variants that lack disulfide bonds but nevertheless display potent antimicrobial activity [Lai, J. R., Huck, B. R., Weisblum, B., and Gellman, S. H. (2002) Biochemistry 41, 12835-12842.]. The activity of these disulfide-free variants, however, is attenuated in the presence of salt, and the activity of PG-1 itself is not. Salt-induced inactivation of host-defense peptides, such as human defensins, is thought to be important in some pathological situations (e.g., cystic fibrosis), and the variation in salt-sensitivity among our PG-1 analogues offers a model system with which to explore the origins of these salt effects. We find that the variations in antimicrobial activity among our peptides are correlated with the folding propensities of these molecules and with the extent to which the peptides induce leakage of contents from synthetic liposomes. Comparable correlations were observed between folding and hemolytic activity. The extent to which added salt reduces antimicrobial activity parallels salt effects on vesicle perturbation, which suggests that the biological effects of high salt concentrations arise from modulation of peptide-membrane interactions.  相似文献   

2.
Structure and biological activities of synthetic peptides corresponding to bovine neutrophil beta-defensin BNBD-12, GPLSC(1)GRNGGVC(2)IPIRC(3) PVPMRQIGTC(4) FGRPVKC(5) C(6)RSW with disulfide connectivities C(1)-C(5), C(2)-C(4) and C(3)-C(6) and its variants with one, two and three disulfide bridges have been investigated. Selective protection of cysteine thiols was necessary in the four and six cysteine containing peptides for the formation of disulfide connectivities as observed in BNBD-12. Circular dichroism (CD) spectra indicate that in aqueous medium, only a small fraction of molecules populate turn-like conformations. In the presence of micelles and lipid vesicles, the single, two and three disulfide containing peptides adopt beta-hairpin or beta-sheet structures. Antibacterial activity was observed for all the peptides, irrespective of the number of disulfide bridges or how they were connected. Our results suggest that a rigid beta-sheet structure or the presence of three disulfide bridges does not appear to be stringent requirements for antibacterial activity in beta-defensins.  相似文献   

3.
Gomesin is an antimicrobial peptide isolated from hemocytes of the Brazilian spider Acanthoscurria gomesiana that contains two disulfide bridges Cys(2-15)/Cys(6-11) and presents a beta-hairpin structure. To investigate the role of the disulfide bridges on gomesin conformation, bioactivities, and serum stability, structure-activity relationship (SAR) studies were conducted. Initially, gomesin and variants lacking one or both disulfide bridges were synthesized. CD studies showed that the gomesin structure is very rigid independently of the solvent environment. On the other hand, the linearized analogues adopted secondary structures according to the environment, while the monocyclic disulfide-bridged peptides had a tendency to adopt a turn structure. The absence of one or both bridges resulted in a decrease in the antimicrobial and hemolytic activities. In addition, serum stability studies revealed that, contrasting to gomesin that was stable even after 48 h of incubation, the linearized analogues were rapidly degraded. The replacement of the disulfide bounds by lactam bridges led to monocyclic and bicyclic compounds. SAR studies indicated that the monocyclic lactam-bridged analogues tend to assume a alpha-helical structure being less potent, hemolytic, and serum stable than the wild-type gomesin. On the other hand, the bicyclic lactam/disulfide-bridged analogues displayed a similar conformation and degradation kinetics identical to gomesin. However, the antimicrobial activity appeared to be dependent on the lactam bridge position and size. These findings indicated that (i) the secondary structure plays a pivotal role for the full activity of gomesin; (ii) the antimicrobial and hemolytic activities of gomesin are correlated events; (iii) while at least one of the disulfide bridges is needed for the maintenance of a significant antimicrobial activity of gomesin, both bridges are required for high serum stability and optimal conformation; and finally (iv) the best analogue obtained was the bicyclo (2-15,6-11)[Glu2, Cys(6,11), Lys15]-Gm since it is as stable and potent as gomesin.  相似文献   

4.

Background

Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6–Cys15 and Cys8–Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of PG-1.

Methods

In order to understand structural and functional roles of disulfide bonds in protegrins, we have synthesized a Cys deleted variant of PG-1 or CDP-1, RGGRLYRRRFVVGR-amide, and two of its analogs, RR11, RLYRRRFVVGR-amide, and LR10, LYRRRFVVGR-amide, containing deletion of residues at the N-terminus. These peptides have been characterized for bactericidal activity and mode of action in lipopolysaccharide (LPS) using optical spectroscopy, ITC and NMR.

Results

Antibacterial activity, against Gram-negative and Gram-positive strains, of the three peptides follows the order: CDP-1 > RR11 > LR10. LR10 displays only limited activity toward Gram-negative strains. CDP-1 demonstrates efficient membrane permeabilization and high-affinity interactions with LPS. CDP-1 and RR11 both assume β-hairpin like compact structures in complex with LPS, whereas LR10 adopts an extended conformation in LPS. In zwitterionic DPC micelles CDP-1 and the truncated analog peptides do not adopt folded conformations.

Major conclusions

Despite the absence of stabilizing disulfide bridges CDP-1 shows broad-spectrum antibacterial activity and assumes β-hairpin like structure in complex with LPS. The β-hairpin structure may be essential for outer membrane permeabilization and cell killing.  相似文献   

5.
Protegrin antimicrobial peptides possess activity against gram-positive and gram-negative bacteria and yeasts. An extensive structure-activity relationship (SAR) study was conducted on several hundred protegrin analogues to gain understanding of the relationship between the primary and secondary structure of the protegrins and their antimicrobial activities, and to identify a protegrin analogue for clinical development. Native sequence protegrins are cationic, amphiphilic peptides that are characterized by the presence of a beta-sheet structure that is maintained by two disulfide bridges. The presence of the beta-sheet is key to the stability of the protegrin structure; linearized analogues or analogues that have amino acid substitutions that eliminate hydrogen bonding across the beta-sheet have reduced activity, especially in the presence of physiological concentrations of NaCl. Also, maintaining amphiphilicity of the beta-sheet is key; analogues with substitutions of polar amino acids in the hydrophobic face have reduced activity. Analogues with reduced positive charge tend to be less active, an observation that is more marked for gram-negative than gram-positive bacteria, and may implicate binding to lipopolysaccharide as a key mechanistic step in the killing of gram-negative bacteria. A very large number of amino acid substitutions are tolerated by the protegrin structure, implying that overall structural features such as amphiphilicity, charge, and shape are more important to activity than the presence of specific amino acids. This lack of importance of specific stereochemistry is supported by the fact that completely D-amino acid substituted protegrins are fully potent. Based on the SAR studies, and on the microbiological data from an animal model, one protegrin analogue, IB-367, was selected for clinical development as a topical agent to prevent the oral mucositis associated with cancer therapy.  相似文献   

6.
Structure and biological activities of synthetic peptides corresponding to human alpha-defensin HNP-1, AC1YC2RIPAC3IAGERRYGTC4IYQGRLWAFC5C6 with the S-S connectivities: C1-C6, C2-C4, C3-C5, and its variants with one, two and three disulfide bridges were investigated. Oxidation of synthetic, reduced HNP-1 yielded a peptide with S-S connectivities C1-C3, C2-C4 and C5-C6, and not with the S-S linkages as in naturally occurring HNP-1. Selective protection of cysteine sulfhydryls was necessary for the formation of S-S bridges as in native HNP-1. Likewise, oxidation of peptide encompassing the segment from C2 to C5, resulted in the S-S linkages C2-C3 and C4-C5 instead of the expected linkage C2-C4 and C3-C5. Antibacterial activities were observed for all peptides, irrespective of how the S-S bridges were linked. Linear peptides without S-S bridges were inactive. Circular dichroism (CD) spectra suggest that peptides constrained by one and two S-S bridges do not form rigid beta-sheet structures in an aqueous environment. The spectrum of HNP-1 in an aqueous environment suggests the presence of a beta-hairpin conformation. In the presence of lipid vesicles, the S-S constrained peptides tend to adopt a beta-structure. Although the S-S connectivities observed in HNP-1 may be necessary for other physiological activities, such as chemotaxis, they are clearly not essential for antibacterial activity.  相似文献   

7.
The membrane interaction and solution conformation of two mutants of the β-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A6,8,13,15] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Δ4,18 G10] PG-1, has only half the number of cationic residues. 31P solid-state NMR lineshapes of uniaxially aligned membranes indicate that the membrane disorder induced by the three peptides decreases in the order of PG-1>[Δ4,18 G10] PG-1?[A6,8,13,15] PG-1. Solution NMR studies of the two mutant peptides indicate that [Δ4,18 G10] PG-1 preserves the β-hairpin fold of the wild-type peptide while [A6,8,13,15] PG-1 adopts a random coil conformation. These NMR results correlate well with the known activities of these peptides. Thus, for this class of peptides, the presence of a β-hairpin fold is more essential than the number of cationic charges for antimicrobial activity. This study indicates that 31P NMR lineshapes of uniaxially aligned membranes are well correlated with antimicrobial activity, and can be used as a diagnostic tool to understand the peptide-lipid interactions of these antimicrobial peptides.  相似文献   

8.
Lee JY  Yang ST  Lee SK  Jung HH  Shin SY  Hahm KS  Kim JI 《The FEBS journal》2008,275(15):3911-3920
The cathelicidin antimicrobial peptide bactenecin is a beta-hairpin molecule with a single disulfide bond and broad antimicrobial activity. The proform of bactenecin exists as a dimer, however, and it has been proposed that bactenecin is released as a dimer in vivo, although there has been little study of the dimeric form of bactenecin. To investigate the effect of bactenecin dimerization on its biological activity, we characterized the dimer's effect on phospholipid membranes, the kinetics of its bactericidal activity, and its salt sensitivity. We initially synthesized two bactenecin dimers (antiparallel and parallel) and two monomers (beta-hairpin and linear). Under oxidative folding conditions, reduced linear bactenecin preferentially folded into a dimer forming a ladder-like structure via intermolecular disulfide bonding. As compared to the monomer, the dimer had a greater ability to induce lysis of lipid bilayers and was more rapidly bactericidal. Interestingly, the dimer retained antimicrobial activity at physiological salt concentrations (150 mm NaCl), although the monomer was inactivated. This salt resistance was also seen with bactenecin dimer containing one intermolecular disulfide bond, and the bactenecin dimer appears to undergo multimeric oligomerization at high salt concentrations. Overall, dimeric bactenecin shows potent and rapid antimicrobial activity, and resists salt-induced inactivation under physiological conditions through condensation and oligomerization. These characteristics shed light on the features that a peptide would need to serve as an effective therapeutic agent.  相似文献   

9.
Jing W  Hunter HN  Tanabe H  Ouellette AJ  Vogel HJ 《Biochemistry》2004,43(50):15759-15766
Mammalian defensins are abundant antimicrobial peptides that contribute to host defense. They are characterized by several conserved amino acids, including six invariant cysteine residues which form three intramolecular disulfide bonds and stabilize the tertiary structure. Cryptdin-4 (Crp4), a mouse alpha-defensin with potent in vitro bactericidal activity, has a primary structure distinct from all known alpha-defensins in that its polypeptide backbone uniquely lacks three residues between Cys(IV) and Cys(V). NMR diffusion experiments showed that Crp4 is monomeric in solution, and its three-dimensional solution structure, determined by two-dimensional proton NMR, consists of a triple-stranded antiparallel beta-sheet with the beta-strands joined to each other by a series of tight turns and a beta-hairpin. However, the overall beta-sheet content in Crp4 is lower than that of other alpha-defensin structures, while the shape and orientation of the Crp4 beta-hairpin also differ from those of other alpha-defensin structures. These structural characteristics combined with the high overall cationicity of Crp4 may contribute to its broad bactericidal spectrum and membrane disruptive activity.  相似文献   

10.
To correlate conformational rigidity with membranolytic selectivity of antimicrobial activity and cytotoxicity, we prepared six cyclic analogs of protegrin-1 (PG-1), an 18-residue cationic peptide with a broad-spectrum antimicrobial activity. These cyclic protegrins bear end-to-end peptide bonds together with varying numbers (zero to three) of cross-strand disulfide constraints. The most constrained analog is a cyclic tricystine protegrin (ccPG 3) containing three evenly spaced, parallel disulfide bonds. Antimicrobial assays against 10 organisms in low- and high-salt conditions showed that these cyclic protegrins were broadly active with different antimicrobial profiles against Gram-positive and Gram-negative bacteria, fungi and one tested virus, HIV-1. Compared to PG-1, the cyclic tricystine ccPG 3 displayed approximately a 10-fold decrease in hemolytic activity against human cells and 6- to 30-fold improvement of membranolytic selectivity against six of the 10 tested organisms. In contrast, [DeltaSS]cPG 8, a cyclic protegrin with no disulfide bond, and [DeltaCys6,15]cPG 5, a cyclic mimic of PG-1 with one disulfide bond, exhibited activity spectra, potency, and cytotoxicity similar to PG-1. Circular dichroism showed that cyclic protegrins containing with one to three cystine bonds displayed some degree of beta-strand structures in water/trifluoroethanol or phosphate-buffered solutions. Collectively, our results indicate that cyclic structures are useful in the design of antimicrobial peptides and that an increase in the conformational rigidity of protegrins may confer membranolytic selectivity that dissociates antimicrobial activity from hemolytic activity.  相似文献   

11.
Turpin ER  Bonev BB  Hirst JD 《Biochemistry》2010,49(44):9594-9603
Nisin is a polymacrocyclic peptide antimicrobial with high activity against Gram-positive bacteria. Lanthionine and methyllanthionine bridges, closing the macrocycles, are stabilized by thioether bonds, formed between cysteines and dehydrated serine or threonine. The role of polypeptide backbone conformation in the formation of macrocycles A and B within cysteine mutants of nisin residues 1?12 is investigated here by molecular dynamics simulations. Enantiomeric combinational space of Cys3 and Cys7 and of Cys8 and Cys11 is examined for the preference of disulfide bond formation over helical turn formation within this region. A clear preference for spontaneous disulfide formation and closure of rings 3,7 and 8,11 is demonstrated for the D-Cys3, D-Cys7, L-Cys8, L-Cys11 nisin homologue, while interlinked rings A and B are obtained through disulfide bridges between L-Cys3 and D-Cys8 and between D-Cys7 and D-Cys11. This study offers a simple designer approach to solid phase synthesis of macrocyclic peptides and lantibiotic analogues.  相似文献   

12.
Human β-defensins (HBDs) are cationic antimicrobial peptides that are components of the innate immune system. They are characterized by three disulfide bridges. However, the number of cationic residues as well as the presence of lysine and arginine residues vary. In HBD4, the cationic residues occur predominantly in the N-terminal segment, unlike in HBD1–3. We have examined the antimicrobial activity of peptides spanning the N- and C-terminal segments of HBD4. We have introduced one, two and three disulfide bridges in the peptides corresponding to the N-terminal segments. Peptides corresponding to the N-terminal segment had identical sequences and variation was only in the number and spacing of cysteines and disulfide bridges. Antimicrobial activity to varying extents was observed for all the peptides. When two disulfide bridges were present, decrease in antimicrobial potency as well as sensitivity of activity to salt was observed. Enhanced antimicrobial activity was observed when three disulfide bridges were present. The antimicrobial potency was similar to HBD4 except against Escherichia coli and was attenuated in the presence of salt. While the presence of three disulfide bridges did not constrain the peptide to a rigid β-sheet, the activity was considerably more as compared to the peptides with one or two disulfide bridges. The peptides enter bacterial and fungal cells rapidly without membrane permeabilization and appear to exert their activity inside the cells rather than at the membrane.  相似文献   

13.
The protegrin PG-1, belonging to the family of beta-stranded antimicrobial peptides, exerts its activity by forming pores in the target biological membranes. Linear analogues derived from PG-1 do not form pores in the phospholipid membranes and have been used successfully to deliver therapeutic compounds into eucaryotic cells. In this paper, the translocation of PG-1 and of a linear analogue through artificial phospholipid membranes was investigated, leading to a possible mechanism for the activity of these peptidic vectors. We report here that [12W]PG-1, a fluorescent analogue of PG-1, is able to translocate through lipid bilayers and we demonstrate that this property depends on its secondary structure. Our results agree with the recent mechanism proposed for the translocation and permeabilisation activities of several helical and beta-stranded peptides. In addition, our data corroborate recent work suggesting that certain protegrin-derived vectors enter into endothelial cells by adsorptive-mediated endocytosis.  相似文献   

14.
Gomesin (Gm) is a potent antimicrobial peptide isolated from the spider Acanthoscurria gomesiana. The two disulfide bridges Cys(2,15) and Cys(6,11) facilitate the folding of the molecule in a beta-hairpin structure, conferring on the peptide a high stability in human plasma. We report herein biological and structural features of new linear Gm analogues, obtained by combining the removal of both disulfide bridges and the incorporation of a D- or L-proline. Regarding their biological properties, two analogues, namely, [D-Thr(2,6,11,15), Pro(9)]-D-Gm and [Thr(2,6,11,15), D-Pro(9)]-Gm, are as potent as Gm against Candida albicans and only fourfold less against Staphylococcus aureus and Escherichia coli. In addition, at 100 microM they are approximately threefold less hemolytic than Gm. The best therapeutic indices were found for [D-Thr(2,6,11,15), Pro(9)]-D-Gm and for [(Des-pGlu(1), -Thr(2), -Arg(3)), Thr(6,11,15), D-Pro(9)]-Gm with a 32-fold increase of their activity against bacteria, and from 128- to 512-fold against yeast when compared with Gm. Regarding the stability, [D-Thr(2,6,11,15), Pro(9)]-D-Gm appeared to be the most resistant in human serum, along with [D-Thr(2,6,11,15), Pro(8)]-D-Gm and [Thr(2,6,11,15), D-Arg(4,16), D-Pro(9)]-Gm. When evaluating their conformation by CD spectroscopy in sodium dodecyl sulfate (SDS), most linear analogues display beta-conformation characteristics. Moreover, considering its high therapeutic index and stability in serum, [D-Thr(2,6,11,15), Pro(9)]-D-Gm was further analyzed by NMR spectroscopy. (1)H NMR experiments in SDS micelles demonstrated that [D-Thr(2,6,11,15), Pro(9)]-D-Gm presents a conformation very similar to that of Gm. In our search for Gm analogues with enhanced potential for drug development, we demonstrated that designing cysteine-free analogues can improve the therapeutic index of Gm derivatives.  相似文献   

15.
The protegrin PG-1, belonging to the family of β-stranded antimicrobial peptides, exerts its activity by forming pores in the target biological membranes. Linear analogues derived from PG-1 do not form pores in the phospholipid membranes and have been used successfully to deliver therapeutic compounds into eucaryotic cells. In this paper, the translocation of PG-1 and of a linear analogue through artificial phospholipid membranes was investigated, leading to a possible mechanism for the activity of these peptidic vectors. We report here that [12W]PG-1, a fluorescent analogue of PG-1, is able to translocate through lipid bilayers and we demonstrate that this property depends on its secondary structure. Our results agree with the recent mechanism proposed for the translocation and permeabilisation activities of several helical and β-stranded peptides. In addition, our data corroborate recent work suggesting that certain protegrin-derived vectors enter into endothelial cells by adsorptive-mediated endocytosis.  相似文献   

16.
Laederach A  Andreotti AH  Fulton DB 《Biochemistry》2002,41(41):12359-12368
Tachyplesin I is a 17-residue peptide isolated from the horseshoe crab, Tachypleus tridentatus.It has high antimicrobial activity and adopts a beta-hairpin conformation in solution stabilized by two cross-strand disulfide bonds. We report an NMR structural investigation of wild-type tachyplesin I and three linear derivatives (denoted TPY4, TPF4, and TPA4 in which the bridging cysteine residues are uniformly replaced with tyrosine, phenylalanine, and alanine, respectively). The three-dimensional aqueous solution structures of the wild type and the active variant TPY4 reveal very similar beta-hairpin conformations. In contrast, the inactive variant TPA4 is unstructured in solution. The arrangement of the tyrosine side chains in the TPY4 structure suggests that the beta-hairpin is stabilized by aromatic ring stacking interactions. This is supported by experiments in which the beta-hairpin structure of TPF4 is disrupted by the addition of phenol, but not by the addition of an equimolar amount of cyclohexanol. We have also determined the structures of wild-type tachyplesin I and TPY4 in the presence of dodecylphosphocholine micelles. Both peptides undergo significant conformational rearrangement upon micelle association. Analysis of the micelle-associated peptide structures shows an increased level of exposure of specific hydrophobic side chains and an increased hydrophobic integy moment. Comparison of the structures in micelle and aqueous solution for both wild-type tachyplesin I and TPY4 reveals two requirements for high antimicrobial activity: a beta-hairpin fold in solution and the ability to rearrange critical side chain residues upon membrane association.  相似文献   

17.
In this paper we quantitatively analyse antimicrobial and haemolytic activities of porcine protegrin-1 (PG-1) mimetics-cyclic cationic peptides with beta-hairpin fold synthesised by Robinson et al. [Bioorg. Med. Chem.2005, 13, 2055]. The presented QSAR models, which use molecular properties related to possible mechanisms of cell membrane disruption that can be easily calculated from available data on amino acids, rationalize the relationships between sequences and antimicrobial and haemolytic potencies of the cyclic peptides. The best models obtained by application of genetic function approximation algorithm correlate antimicrobial potencies to the peptide's charge and amphipathicity index, while the haemolytic effect correlates well with the lipophilicity of residues forming the nonpolar face of the beta-hairpin. The models permit selection of site-directed residue substitutions leading to simultaneous optimization of antimicrobial and haemolytic potencies. Examples of such residue substitutions in the nonpolar face of a symmetric cyclic beta-hairpin PG-1 analogue with an ideal amphipathic structure are given.  相似文献   

18.
The solution structure of polyphemusin I was determined using (1)H-NMR spectroscopy. Polyphemusin I was found to be an amphipathic, beta-hairpin connected by a type I' beta-turn. The 17 low-energy structures aligned very well over the beta-sheet region while both termini were poorly defined due in part to a hinge-like region centred in the molecule about arginine residues 6 and 16. Conversely, a linear analogue, PM1-S, with all cysteines simultaneously replaced with serine was found to be dynamic in nature, and a lack of medium and long-range NOEs indicated that this molecule displayed no favoured conformation. Circular dichroism (CD) spectroscopy confirmed that in solution, 50% trifluoroethanol (TFE) and in the presence of liposomes, PM1-S remained unstructured. The antimicrobial activity of PM1-S was found to be 4- to 16-fold less than that of polyphemusin I and corresponded with a 4-fold reduction in bacterial membrane depolarization. Both peptides were able to associate with lipid bilayers in a similar fashion; however, PM1-S was completely unable to translocate model membranes while polyphemusin I retained this activity. It was concluded that the disulfide-constrained, beta-sheet structure of polyphemusin I is required for maximum antimicrobial activity. Disruption of this structure results in reduced antimicrobial activity and completely abolishes membrane translocation indicating that the linear PM1-S acts through a different antimicrobial mechanism.  相似文献   

19.
Zhu Q  Liang S  Martin L  Gasparini S  Ménez A  Vita C 《Biochemistry》2002,41(38):11488-11494
The aim of this study is to investigate the contribution of each disulfide bond in the folding and function of leiurotoxin I, a short scorpion toxin that blocks small conductance K(+) channels. The structure of leiurotoxin I contains a motif conserved in all scorpion toxins, formed by a helix and a double-stranded beta-sheet and stabilized by three disulfide bridges. We synthesized three analogues, each presenting two alpha-aminobutyric acid (Abu) moieties replacing two bridged cysteine residues: LeTx1 ([Abu 3,21] Leiurotoxin I), LeTx2 ([Abu 8,26] Leiurotoxin I), and LeTx3 ([Abu 12,28] Leiurotoxin I). All three analogues fold into a major product containing two native disulfide bonds, while LeTx3 forms an additional isomer, containing non-native disulfides. In denaturing conditions, analogues LeTx2 and LeTx3 yield non-native isomers, while LeTx1 only forms the isomer with native disulfides. All isomers with native disulfides contain nativelike alpha-helical conformations and bind to synaptosomal membranes with affinities within a log of that shown by the native toxin. By contrast, the non-native LeTx3A analogue exhibits a disordered conformation and a decreased biological potency. Our results indicate that the "CxxxC, CxC" cysteine spacing, conserved in all scorpion toxins and preserved in LeTx1, may play an active role in folding, and that only two native disulfide bonds in leiurotoxin I are sufficient to preserve a nativelike and active conformation. Thus, in the scorpion toxin scaffold, modifications of conserved and interior cysteine residues may permit modulation of function, without significantly affecting folding efficiency and structure.  相似文献   

20.
Three novel antimicrobial peptides (AMPs), named panurgines (PNGs), were isolated from the venom of the wild bee Panurgus calcaratus. The dodecapeptide of the sequence LNWGAILKHIIK-NH2 (PNG-1) belongs to the category of α-helical amphipathic AMPs. The other two cyclic peptides containing 25 amino acid residues and two intramolecular disulfide bridges of the pattern Cys8–Cys23 and Cys11–Cys19 have almost identical sequence established as LDVKKIICVACKIXPNPACKKICPK-OH (X=K, PNG-K and X=R, PNG-R). All three peptides exhibited antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, antifungal activity, and low hemolytic activity against human erythrocytes. We prepared a series of PNG-1 analogs to study the effects of cationicity, amphipathicity, and hydrophobicity on the biological activity. Several of them exhibited improved antimicrobial potency, particularly those with increased net positive charge. The linear analogs of PNG-K and PNG-R having all Cys residues substituted by α-amino butyric acid were inactive, thus indicating the importance of disulfide bridges for the antimicrobial activity. However, the linear PNG-K with all four cysteine residues unpaired, exhibited antimicrobial activity. PNG-1 and its analogs induced a significant leakage of fluorescent dye entrapped in bacterial membrane-mimicking large unilamellar vesicles as well as in vesicles mimicking eukaryotic cell membrane. On the other hand, PNG-K and PNG-R exhibited dye-leakage activity only from vesicles mimicking bacterial cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号