首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suprabasal progesterone concentrations around oestrus have induced disturbances in oestrous behaviour and ovulation. To determine whether fertility in such an altered oestrus can be maintained at normal levels with additional inseminations (AI) until ovulation, fertility was compared in heifers (n = 11) inseminated in normal oestrous cycles and thereafter in cycles in which the animals were treated with progesterone in order to create suprabasal concentrations after luteolysis. The treatment consisted of silicone implants containing 10.6 mg kg−1 of progesterone inserted subcutaneously on Day 8 of the oestrous cycle (day of ovulation designated Day 0) and removed on Day 25. Both in control oestrous cycles and oestrous cycles under progesterone treatment, growth of the ovulatory follicle and ovulation were determined by frequent ultrasound scanning. Blood was collected frequently for further analysis of progesterone, oestradiol-17β and luteinising hormone (LH). Insemination was performed 12 h after onset of standing oestrus. if ovulation did not occur 24 h after AI, heifers were inseminated again until ovulation. Pregnancy was diagnosed by ultrasound 25 days after ovulation.In control oestrous cycles, plasma progesterone decreased to 0.3 ± 0.3 nmol 1−1. Duration of oestrus was 22.9 ± 2.0 h, the interval from onset of oestrus to ovulation was 32.4 ± 2.3 h and the interval from LH peak to ovulation was 28.6 ± 1.4 h. The interovulatory interval was 20.7 ± 0.6 days. In oestrous cycles in treated heifers, progesterone decreased to 1.0 ± 0.3 nmol l−1 (P > 0.10) and the interovulatory interval was prolonged to 23.5 ± 1.0 days (P < 0.05). Standing oestrus lasted 47.2 ± 12.0 h (P = 0.09, n = 7). The interval from the onset of oestrus to ovulation was 59.4 ± 13.0 h (P = 0.08) and the interval from LH peak to ovulation 25.8 ± 1.3 h (P > 0.10). The prolonged oestrus was associated with increased (P < 0.05) growth of the ovulatory follicle and higher (P < 0.05) release of oestradiol-17β. Conception rates were 90% and 46% (P < 0.05), and the numbers of AI per heifer were 1.1 ± 0.1 and 3.4 ± 0.6 (P < 0.01) for control oestrous cycles and after treatment, respectively.The induction of suprabasal concentrations of progesterone caused asynchronies similar to those observed in cases of repeat breeding. The repeated AI did not maintain fertility at normal levels. It is suggested that the extended growth of the ovulatory follicle may cause impaired oocyte maturation or it may alter the maternal milieu owing to the prolonged release of oestradiol.  相似文献   

2.
In order to investigate the potential influence of stress as a component of the repeat breeding syndrome, the adrenocortical capacity for steroid production was evaluated in ovariectomised dairy heifers. In repeat breeder heifers (RBH), marginally elevated plasma progesterone levels during oestrus, so-called suprabasal progesterone levels, have earlier been measured and are believed to impair fertility. The aim was to distinguish if this progesterone could be of extra-gonadal or in this case, adrenal origin. Baseline levels of plasma cortisol and progesterone were determined as well as the corresponding response after induced acute stress in the form of an adrenocorticotropin (ACTH)-challenge. Comparisons were made between strictly selected RBH, n=5 and virgin heifers (VH), n=5 of the Swedish Red and White breed. The heifers were used as their own pre-challenge controls in a 2-day trial. On the control day, saline was injected i.v. and on the treatment day, a synthetic analogue of ACTH (60 microg Synachten(R)). Via a jugular vein catheter, blood samples were collected every 30 min for 6 h each day of the experiment. Analyses for plasma progesterone and cortisol were made. RBH had a significantly higher (P<0.01) pretreatment baseline cortisol level (10.1+/-2.3 nmol l(-1)) than VH (2.6+/-0.2 nmol l(-1)). Moreover, the cortisol response after stimuli was stronger in RBH than VH, especially concerning total hormone production (P<0. 001), but there was also a tendency towards higher peak values (P=0. 06) and longer duration of significantly increased hormone concentrations (P=0.08). Progesterone concentrations, however, did not differ between the groups. Both baseline levels (P=0.25) and posttreatment production (P=0.45) were of the same magnitude in RBH and VH. In conclusion, the study could not confirm that suprabasal progesterone concentrations during oestrus in RBH derive from the adrenal glands. Still, apparent differences were found in adrenocortical activity when ovariectomised heifers, VH and RBH, were subjected to an ACTH-challenge. It is suggested that a sustained adrenal stimulation associated with environmental or social stress could be one factor in the repeat breeding syndrome.  相似文献   

3.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

4.
In order to induce suprabasal plasma concentrations of progesterone after luteolysis and to determine their effect on oestrous behaviour and ovulation, heifers subcutaneously received silicone implants containing 2.5 (n = 4), 5 (n = 4), 6 (n = 3), 7.5 (n = 3) or 10 (n = 4) g of progesterone, or an empty implant (controls, n = 5) between days 8 and 25 of the cycle (ovulation designated Day 0). Growth of dominant follicles and time of ovulation were determined by ultrasound, and signs of oestrus were recorded and scored. Blood was collected at 2–4 h intervals from Days 15 to 27 and assayed for progesterone concentration. In all heifers, plasma concentrations of progesterone sharply decreased during Days 16–18. Control heifers had their lowest progesterone levels on Days 20.5 and 21, standing oestrus on Day 19.5 ± 0.4 (mean ± SEM), and ovulated on Day 20.7 ± 0.4. A similar pattern was observed in heifers treated with 2.5 and 5 g progesterone. Heifers treated with 6, 7.5 and 10 g of progesterone showed an extended (P < 0.05) interovulatory interval. Onset of prooestrus and time of maximum expression of signs of oestrus were not significantly different from those in controls. However, there was an absence of standing oestrus in most of the cases, signs of oestrus lasted longer (P < 0.05) and were weaker in intensity when doses increased. In these groups, the lowest progesterone concentrations were attained shortly after implant removal. Some heifers treated with 6 and 7.5 g of progesterone had standing oestrus and post oestrous bleeding as seen in the controls but ovulation occurred from Days 24.5 to 27. When plasma progesterone concentrations were over 1 nmol 1−1, disturbed oestrus and delayed ovulation occurred. The extended period of prooestrus and oestrus and delayed ovulation were similar to that described in cases of repeat breeding. It is suggested that suprabasal plasma concentrations of progesterone, after luteolysis, may lead to asynchrony between onset of oestrus and ovulation and consequently be a cause of repeat breeding in cattle.  相似文献   

5.
The aim of the experiment was to study the oestrous behaviour and the peripheral blood plasma profiles of luteinizing hormone (LH), progesterone and the prostaglandin metabolite, 15-keto-13,14-dihydro-PGF2, during oestrus and metoestrus in repeat breeder (RBH) and virgin heifers (VH). Ten animals of each category were utilized. The RBH had a history of at least three inseminations without conception, and the VH were sexually mature animals not previously inseminated or mated. Oestrous symptoms were recorded and blood collected from the onset of prooestrus to 7 days after oestrus. The animals were inseminated during oestrus and their embryos were collected by a nonsurgical technique 7 days after insemination. The morphology of the embryos was evaluated.

The duration of oestrus was longer (P < 0.05) in the RBH (31.5 ± 3.6 h) than in the VH (23.8 ± 2.0 h). No differences in duration of prooestrus or in the interval from the end of oestrus to postoestrous bleeding were found between the heifer categories. The interval from the onset of oestrus to the preovulatory LH peak was longer (P < 0.05) in the RBH (12.2 ± 2.8 h) than in the VH (4.8 ± 1.5 h). There was a lower LH release in the RBH than in the VH, measured as the magnitude of the preovulatory LH peak (P < 0.05; 28.0 ± 4.0 vs. 40.7 ± 3.6 μg/l) or as the area under the curve of the LH peak (P < 0.01; 1141 ± 164 vs. 1765 ± 144 mm2). The progesterone levels were higher (P < 0.05) in the RBH than in the VH during the interval 5–48 h and lower (P < 0.05) during the interval 121–168 h after the LH peak. Peaks of the prostaglandin metabolite were seen during oestrus in both heifer groups. There were more prostaglandin metabolite peaks in the RBH than in the VH during the interval 13–24 h after the LH peak. Fewer normal embryos (P < 0.05) and more degenerated embryos (P < 0.01) were found in the RBH than in the VH group 7 days after insemination. No apparent relation was found between the morphology of the embryos and the hormonal changes.

The result of the study indicates a hormonal imbalance in the RBH. The hormonal asynchronism starts before or early in oestrus, which presumably leads to a sequence of improper hormonal changes responsible for the elevated embryonic loss in repeat breeder animals.  相似文献   


6.
Repeat breeding occurs at an incidence of 10% in the Swedish dairy cow population.Evidence is available for a hormonal asynchrony around estrus in repeat-breeder heifers (RBH). This asynchrony seems to be the underlying cause for a series of dysfunctions such as prolonged standing estrus and delayed ovulation, leading to fertilization failure. For further determinations of repeat-breeder estrous cycle characteristics, seven strictly selected RBH and six virgin heifers (VH) were studied during 3-7 consecutive cycles, with particular attention paid to the estrous period. Follicular dynamics were studied by ultrasonography and related to estrous behavior and pattern of sexual hormones (progesterone, estradiol-17beta, and LH) in peripheral circulation. Mean group data were compared and a classification model was designed. The most prominent findings for RBH were prolonged duration of estrus, delayed LH peak, prolonged lifespan of the preovulatory follicle, and a late postovulatory rise in plasma progesterone. There was also a strong tendency for peri-ovulatory suprabasal progesterone levels in RBH. It is suspected that these deviations cause changes in the microenvironment of the preovulatory follicle, negatively affecting the final maturation of the oocyte. The heterogeneity of the RBH group underlines the multifactorial cause of the repeat-breeder syndrome. The VH formed a homogenous group with data varying within physiological limits. A classification model based on three characteristic variables managed to identify 81% of the VH and 79% of the RBH correctly. Results from this study propose that some heifers have general, consistent problems in synchronizing estrous events, displayed as varying symptoms in the course of consecutive estrous cycles. These subfertile animals could be classified as repeat-breeders.  相似文献   

7.
The aim of this study was to compare the development of embryos from repeat breeder heifers with that of embryos from virgin heifers at 7 days after standing heat. A total of 23 repeat breeder heifers (RBH) and 18 virgin heifers (VH) were utilized. The heifers were between 16 and 30 months of age and most of them were of the Swedish Red and White Breed. Two RBH were heterozygous for the 129 chromosome translocation, one RBH was a trisomy X and all the other heifers had normal karyotypes. All heifers were inseminated with frozen semen from the same bull and all inseminations were performed by the author. The fertility of the bull was above the average for the AI association to which it belonged. Embryos were collected by a non-surgical technique (89) or after slaughter (19). The morphology of the embryos was examined under a phase-contrast microscope and they were classified as being normal (N), morphologically deviating (MD) or degenerated (D). Thirteen embryos from RBH and 15 from VH were examined for total cell numbers after examination of their morphology.There was no significant difference in recovery rates of embryos between RBH (68%) and VH (76%) but independent of collection method the recovery rate of embryos from VH was numerically higher. The fertilization rate was high in both RBH (89%) and VH (97%). Seventyfour percent of the embryos collected from VH were normal (2331) while only 28% (1140) of the embryos collected from RBH had a normal morphology. The difference in number of normal embryos recovered from the two groups of heifers was highly significant (P < 0.005). Exclusion of the RBH heifers with deviating karyotype did not influence this difference. However, there was a tendency to a higher incidence of fertilization failure and morphologically deviating embryos in these heifers. The N embryos had significantly higher total cell numbers (P < 0.005) than the MD embryos but there was no significant difference in total cell numbers between N embryos from RBH or VH.The results of this study strongly indicate a higher incidence of abnormal embryos in RBH than in VH. It is likely that these deviations are followed by an increased incidence of early embryonic death.  相似文献   

8.
Boar semen can be successfully frozen - highly packed - in small containers (medium-straw, MS or MiniFlatPack, MFP). The use of deep intra-uterine artificial insemination (DIU-AI) can make possible the deposition of small volumes of this thawed, non re-extended semen deeply intra-uterine, close to the sperm reservoir. The present experiments studied the fertility achieved after single or double DIU-AI per oestrus, with special attention to the interval between AI and spontaneous ovulation. Semen from two boars of proven fertility was frozen in MS or MFP holding 1 x 10(9) total spermatozoa. Multiparous (2-5 parity, n=42) crossbred sows were checked for oestrous behaviour after weaning and the occurrence of spontaneous ovulation was checked with transrectal ultrasonography (TUS) to establish the mean interval between onset of oestrus (OO) and ovulation which was found to be when approximately 2/3 of the oestrus period has passed. The sows were, in the following standing oestrus, subjected to DIU-AI using thawed semen from either MS (n=20) or MFP (n=22), inseminated without further re-extension. The sows were randomly allotted to one of three groups: (1) single DIU-AI 8 h before expected ovulation (control group, n=19); (2) single DIU-AI 4 h before expected ovulation (treatment group S, n=15); and (3) double DIU-AI 12 and 4 h before expected ovulation (treatment group D, n=8). Occurrence of spontaneous ovulation was confirmed by TUS, performed as during the first oestrous period and used to determine the real interval of DIU-AI and ovulation. Pregnancy was also confirmed by TUS 28 days after OO in those sows not returning to oestrus. These sows were slaughtered (30-45 days of pregnancy), and the appearance of the reproductive tract and ovaries, the number of live and dead foetuses, of implantation sites and of corpora lutea (CL) were recorded. Sows (n=9) returning to oestrus ("open") were re-inseminated (either once [n=4] or twice [n=5]) the following oestrus with either MFP (n=5) or MS (n=4) and slaughtered 12-14 h post-ovulation for recovery of tubal oocytes and of spermatozoa from the uterotubal junctions (sperm reservoir), to assess the degree of effectiveness of sperm transport. Post-thaw sperm motility was 44.3+/-3.21% in MFP and 42.8+/-0.72% for MS (LSmean+/-S.E.M., n.s.), and did not significantly change from thawing to AI. The DIU-AI could be performed in all sows, but insertion was difficult (slow >5 min) in 5/42 sows. Four of these sows returned to oestrus. Pregnancy rate averaged 35% (group D: 25%, group S: 40%, control: 36%, n.s.). The interval between DIU-AIs and spontaneous ovulation varied largely, ranging from -13 to -3 h for group C, for group S from -11 to +3 h and for group D from -17 to -4 h. Pregnancy rates were clearly related to the interval DIU-AI and ovulation, being highest (60%, 12/20) when AI occurred between 8 and 4 h before spontaneous (not expected) ovulation. The number of implantation sites ranged 6-22 (n.s. among groups), and the number of alive foetuses 2-11 (n.s. among groups). Implantation rate (total number of implantations/CL) ranged 48.0-69.7% being highest in the D-group (P<0.05). The examination of the "open" sows slaughtered 12-14 h post-ovulation revealed few recovered oocytes were fertilized (approximately 10%). Only 40% of oocytes had spermatozoa bound to the zona pellucida, not more than two spermatozoa per oocyte. Moreover, low sperm numbers (approximately 4000) were found in the sperm reservoirs (UTJs), irrespective of using single or double DIU-AI (n.s.). The highest values (P<0.05) for these variables were recorded when DIU-AI (either single or double [second AI]) occurred 4-8 h before ovulation, especially when MFP-semen was used (P<0.05). In conclusion: (1) DIU-AI can be easily performed in most sows; (2) pregnancies can be obtained by the DIU-AI of low volumes of highly concentrated frozen-thawed boar semen, once or twice during oestrus, but fertility is still low, probably owing to an unsatisfactory sperm transport when expected and real ovulation differ; and (3) fertility is related to the interval DIU-AI and ovulation which should be -8 to -4 h of spontaneous ovulation and to the package, MFP having shown better results in vivo. The results stress the need for careful, and frequent, control of oestrus signs.  相似文献   

9.
There is evidence that repeat breeding in dairy cattle can be caused by both extrinsic, environmental factors and intrinsic, animal factors. In repeat-breeder heifers (RBH), disturbed endocrine patterns and estrous events result in a subsequent decreased fertility associated with delayed ovulation. Whether infertility is also due to the presence of an unsuitable follicular environment impairing normal fertilization, remains to be determined. At the onset of standing estrus, ovaries were obtained from 7 strictly defined RBH and 5 virgin heifers (VH) of the Swedish Red and White breed. Detection of apoptosis in the preovulatory and three subordinate follicle walls was done by using the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) technique at light microscopy level. The follicles were histologically assessed for degree of atresia. The ultrastructure of the follicle wall and recovered oocytes was studied using transmission electron microscopy. The overall degree of apoptosis in membrana granulosa and theca interna of preovulatory and subordinate follicles did not differ between RBH and VH, but the numbers of TUNEL-positive cells differed significantly between preovulatory and subordinate follicles in both RBH and VH. There was a strong relationship between density of apoptotic cells and degree of atresia. No differences in follicle wall apoptosis nor morphology were detectable, suggesting that repeat breeder heifers enter standing estrus with the same morphological prerequisites as normal animals, considering follicular structure.  相似文献   

10.
A study was done to evaluate the effect of using progesterone (P4) intravaginal device (CIDR: controlled internal drug-releasing dispenser) to synchronise the return to oestrus of previously timed inseminated (TAI) dairy heifers, and to evaluate embryo survival and pregnancy rate (PR) in the return to oestrus heifers. At the onset of the artificial insemination (AI) breeding period (day -9), heifers were randomly assigned into two groups (treated group CGPG, n = 79) and (control group GPG, n = 83). Every heifer in both groups was injected with gonadotropin-releasing hormone (GnRH) agonist and prostaglandin F2-alpha (PGF2α) as follows: GnRH on day -9; PGF2α on day -2; GnRH and TAI on day 0. Heifers in both groups received TAI within 30 min after the second GnRH injection. Artificial insemination at first breeding was conducted for all heifers during 55 days from day 0. On day 14 after timed insemination, every heifer in the CGPG group received CIDR device for 6 days. Within 3 days after CIDR removal, more heifers in CGPG group showed oestrus within 1.9 days compared to heifers that showed oestrus within 2.9 days in the control. Within 10 days after CIDR removal, more heifers in the CGPG group showed oestrus within 2.4 days compared to heifers that showed oestrus within 6.7 days in the control. PRs on days 30 and 55 were not different between both groups, while PR on day 55 during September were higher (P = 0.032) in CGPG group (58.0%) than GPG group (37.0%). In addition, PR from first to second AI was higher (P = 0.037) for CGPG group (79.8%) than for GPG group (65.1%) but it was similar after that. Pregnancy losses between days 30 and 55 tended to be lower (P = 0.089) for the CGPG group (12.7%) compared to 25.1% for the GPG group. Interval between first and second AI was lower (P = 0.052) for the CGPG group (27.5 ± 1.6 days) compared to 31.6 ± 1.3 days for heifers in the GPG group but no differences were detected for intervals from second to third AI and from third to fourth AI between the two groups. Number of services per pregnancy was not different between CGPG and GPG groups. Results indicate that the CIDR device improved synchronisation to return to oestrus and increased PR to first AI during high temperature months by reducing embryonic losses.  相似文献   

11.
The objective of this study was to determine the effect of oestrous synchronization methods on oestrous behaviour, timing of ovulation and pregnancy rate during the breeding and low breeding seasons in Nili-Ravi buffaloes. In Experiment 1, oestrous behaviour and timing of ovulation were determined from (n=34) oestruses. The mean (+/- S.E.M.) time of ovulation after the onset of standing oestrus was greater (P<0.05) in PGF(2alpha)-induced luteolysis (30.6+/-1.5h) compared to Ovsynch buffaloes (15.0+/-0.8h). In Experiment 2, pregnancy rates were compared between two methods of synchronization (detected oestrus and Ovsynch protocol) during the breeding and low breeding seasons. Pregnancy rates of buffaloes bred at detected oestrus (62.5%) or by the Ovsynch protocol (36.3%) during the breeding season did not differ significantly (P>0.05) from those which were inseminated during the low breeding season (55.5%) and (30.4%), respectively. This study demonstrates clearly that (1) timing of ovulation in Nili-Ravi buffalo is about 30h after the onset of standing oestrus and (2) buffaloes can be successfully synchronized with optimum fertility using either PGF(2alpha) alone (detected oestrus) or using (Ovsynch protocol) during low breeding season, to calve during the period when milk availability is short.  相似文献   

12.
The effects of chronic treatment with norgestomet on follicular dynamics, corpus luteum growth and function as well as the temporal relationships among body temperature, oestrous behaviour, the luteinizing hormone (LH) surge and ovulation following implant removal were studied in 16 Holstein heifers. Oestrous cycles of the heifers were initially synchronized using 2 injections of prostaglandin F-2 alpha (PGF-2 alpha) 12 days apart. The heifers were then implanted with a norgestomet ear implant for 9 days, beginning either at the middle of the synchronized cycle (dioestrus) or at the end of the synchronized cycle (pro-oestrus). Follicular dynamics, corpus luteum growth and regression, and plasma progesterone were not affected by norgestomet treatment at dioestrus. The dominant follicle present at the time of norgestomet implantation in the pro-oestrus group was maintained during the 9-day implant period of 6 of 8 heifers and ovulated after implant removal. Time from implant removal to onset of standing oestrus and time to LH peak following implant removal were highly correlated with the time of ovulation (r = 0.92 and 0.96, respectively). Onset of standing oestrus and the LH peak and the onset of standing oestrus and peak vaginal and rectal temperatures were also highly correlated (r = 0.96, 0.82 and 0.81, respectively). It is concluded that any decrease in pregnancy rates following treatment with norgestomet is not due to asynchrony among oestrus, the LH surge and ovulation.  相似文献   

13.
The present study was undertaken to determine if a short-term prolonged growth of the ovulatory follicle (12 to 18 h after expected time of ovulation), induced by progesterone implants, would cause ultrastructural changes in the follicular wall. Oestrous behaviour, follicular growth, follicular and blood plasma levels of oestradiol-17ß, progesterone and plasma luteinizing hormone (LH) were monitored in heifers oophorectomized at 9 to 12 h (controls) or 36 h after the onset of oestrus, in order to sample the pre-ovulatory follicle present. The suprabasal plasma progesterone concentrations (approximately 1.2 nmol L−1) allowed expression of oestrus at the expected time, but ovulation was delayed owing to the absence of a LH-surge. The resulting prolongation of follicle growth was associated with mild degenerative changes in the follicle wall, i.e. both granulosa and thecal cells presented increased electron density, higher amounts of secondary lysosomes and lipid droplets, increased intercellular spaces with presence of debris. No signs of luteinization were seen.  相似文献   

14.
Estrus synchronization contributes to optimizing the use of time, labor, and financial resources by shortening the calving season, in addition to increasing the uniformity of the calf crop. We determined whether acceptable pregnancy rates could be achieved after synchronization of ovulation and fixed-time artificial insemination (AI) in peripuberal replacement beef heifers using gonadotropin-releasing hormone (GnRH) and PGF2alpha. Crossbred heifers from two herds (MH, n=239; SS, n=330) were wintered at a single location. After a prebreeding examination revealed that 55 heifers had a reproductive tract score (RTS) of 1 (infantile reproductive tracts), they were culled and the remaining heifers were assigned randomly to one of three treatment groups: administration of 25mg PGF2alpha i.m. on Days -12 and 0 followed by estrus detection and insemination between 10 and 14 h after an observed estrus (Control; n=173); administration of 100 microg GnRH i.m. on Day -6, followed by 25 mg PGF2alpha i.m. on Day 0, then fixed-time AI and administration of 100 microg GnRH i.m. on Day +2 (GPG; n=172); and, treatment as for group GPG in addition to administration of 100 microg GnRH i.m. on Day -12 (GGPG; n=169). Bulls were introduced 10 days after AI for 60 days to breed heifers which did not conceive after AI (clean-up bulls). On Days -12, -6, and 0 transrectal ultrasonography was used to monitor ovarian structures in a subset of heifers (30 per treatment). At 30-35 days after AI, ultrasound was used to determine the presence of a viable fetus. Presence of a fetus and stage of pregnancy were determined via palpation per rectum 61-63 days after the conclusion of the breeding season. Heifers in the MH herd (309+/-1.9 kg) were heavier (P<0.001) than those in the SS herd (283+/-1.7 kg) at initiation of the breeding season. Synchronized pregnancy rates were greater (P<0.05) in GGPG (25.4%) and GPG (22.1%) than Control (12.7%) heifers. Pregnancy rates were 9, 21, 32, or 31% for heifers with RTS of 2, 3, 4, or 5, respectively. The average diameter of 22 follicles induced to ovulate in heifers treated with GnRH (GPG and GGPG treatments) was 14.2+/-0.8 mm (range=10.0-23.6 mm). In conclusion, a fixed-time ovulation synchronization program using GnRH and PGF2alpha improved pregnancy rates in peripuberal, lightweight replacement beef heifers.  相似文献   

15.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

17.
Two trials were conducted to determine the influence of semen placement on pregnancy rate in dairy heifers and cows. Seventy-two dairy heifers were artificially inseminated (AI) 10 to 12 h after the first detection of estrus. Control heifers (n = 25) were inseminated at the junction of the uterine body and internal cervical os. The remaining heifers were inseminated deep in one uterine horn, 3 to 5 cm anterior to the external bifurcation. Twenty-three heifers were inseminated in the horn ipsilateral to the ovary bearing the ovulatory follicle, and 24 heifers were inseminated in the contralateral horn. Pregnancy rates did not differ for the three groups of heifers. In a second trial, 64 inseminations were performed in 38 nonlactating, adult dairy cattle. Thirty-one inseminations were made deep in the uterine horn ipsilateral to the ovary bearing the ovulatory follicle and 33 in the contralateral horn. Pregnancy rates were similar for both groups. Combining both trials, pregnancy rates for ipsilateral and contralateral inseminations were equal (32 54 = 59% and 34 57 = 60% , respectively). Therefore, placement of semen in one horn of the uterus does not appear to be a cause of decreased or increased pregnancy rate with AI.  相似文献   

18.
Pattern and manipulation of follicular development in Bos indicus cattle   总被引:1,自引:0,他引:1  
Bos indicus cattle are widespread in tropical regions due to their adaptation to these environments. Although data on reproductive performance have indicated both inferior and superior results for B. indicus cattle, there is little doubt that B. indicus cattle are superior than Bos taurus cattle when they are both kept in tropical or subtropical environments, where stressors like hot temperatures, humidity, ectoparasites and low quality forages are greater. Reproductive endocrinology and oestrus behaviour of the B. indicus cattle have been studied for over 30 years; however, the application of technologies such as real time ultrasonography and Heat-Watch systems has expanded our knowledge on the ovarian follicular-wave dynamics during the oestrous cycle and the time of ovulation. Ovarian follicular dynamics in B. indicus cattle is characterised by the occurrence of two, three or sometimes four waves of follicular development. While dominance is similar to that in B. taurus cattle, maximum diameters of the dominant follicle and CL are smaller than those reported in B. taurus and are probably due to a lower capacity for LH secretion than in B. taurus. Duration of oestrus is approximately 10 h and the interval from oestrus to ovulation is about 27 h. However, the variability in response to prostaglandin F2alpha (PGF) treatments and the difficulty for oestrus detection in B. indicus cattle have limited the widespread application of artificial insemination (AI) and emphasizes the need for treatments that control follicular development and ovulation. Follicular-wave development in B. indicus cattle can be controlled mechanically by ultrasound-guided follicle ablation, or hormonally by treatments with GnRH or oestradiol and progestogen/progesterone in combination. Treatments with GnRH plus PGF and a second GnRH (synchronization protocol known as Ovsynch) or oestradiol benzoate (known as GPE) have resulted in acceptable pregnancy rates after fixed-time AI (FTAI) in cycling cows, but results were lower in heifers and cows in postpartum anoestrus. Alternatively, treatments with oestradiol and progestogen/progesterone releasing devices resulted in synchronous emergence of a new follicular wave, and a second oestradiol or GnRH treatment after device removal resulted in synchronous ovulation and acceptable pregnancy rates to FTAI. Furthermore, oestradiol and progesterone treatments combined with eCG (given at the time of device removal) increased pregnancy rates in suckled B. indicus cows and may be useful for the treatment of cows in postpartum anoestrus. In summary, exogenous control of luteal and follicular development facilitates the application of assisted reproductive technologies in B. indicus cattle by offering the possibility of planning AI programs without the necessity of oestrus detection and without sacrificing the overall results.  相似文献   

19.
The objectives of this study were to examine the relationships between periovulatory endocrine events, ovarian activity, and embryo survival after artificial insemination (AI) in cattle (Bos taurus). Eighty-four reproductively normal beef heifers were estrus synchronized using a prostaglandin-based regimen. Artificial insemination was performed between 5 and 21 h after heat onset. Ultrasonic examination of ovarian structures began 12 h after the onset of heat and continued every 6 h until confirmed ovulation. Blood samples were collected for measurement of estradiol, progesterone, and insulin-like growth factor-1 (IGF-1). Pregnancy diagnosis was conducted on Days 30 and 100 after AI. Embryo survival was defined as the presence of an embryo with a detectable heartbeat in a clear amniotic sac at Day 30 postinsemination. There was no effect of the intervals from the onset of heat to AI or ovulation or from AI to ovulation on embryo survival (P > 0.10). There was a tendency (P = 0.09) of an inverse relationship between preovulatory follicle size and embryo survival that was unrelated to concentrations of estradiol or IGF-1 during the periovulatory period (P > 0.05). There was evidence (P = 0.08) of a positive association between embryo survival and concentrations of progesterone on Day 7; however, this relationship was independent (P < 0.05) of hormonal and follicular measurements during the periovulatory period. This study shows that heifers could be inseminated up to 31.5 h before ovulation without compromising the probability of embryo survival. This study suggests that there is an optimum range of follicle size within which high embryo survival rates can be achieved.  相似文献   

20.
A total of 415 fat tailed ewes were randomly assigned to two groups to assess the effect of duration of melengestrol acetate (MGA) (9 versus 12d) administration on reproductive parameters associated with laparoscopic artificial insemination. At the end of MGA treatment, ewes in each group were subdivided and inseminated with one of two different insemination doses (10×10(7) or 20×10(7) sperm per 0.5 ml insemination dose) of fresh diluted semen. Inseminations were carried out 11-18 h after first detected estrus. Ewes were screened for their return to oestrus from 10 to 21 days post AI and inseminated at their returned oestrus. Pregnancy diagnosis was done from approximately 55 days after insemination in both synchronized and return estrus. For short (9-day) and long (12-day) term MGA treated groups, estrus rates were 62% versus 89% (P<0.0001), respectively. Ewes (n=115) that returned to estrus were inseminated (7-11h after estrus detection) with fresh diluted semen at different doses (20×10(7) or 40×10(7) or 60×10(7) sperm per 0.5 ml insemination dose). Pregnancy rates were 41% and 44% for short term and long term MGA treated ewes, respectively. Pregnancy rate of ewes which returned to oestrus was 53.4%. There was a significant (P<0.05) increase in pregnancy rates (38-52% for 11-16 h; 63% for 17-18 h) when insemination was held at 17-18 h after first detected estrus following MGA treatments. Pregnancy rates were found to be similar in ewes inseminated with 10×10(7) (36%) or 20×10(7) (47%) motile spermatozoa at first AI, and 20×10(7) (44%) or 40×10(7) (59%) or 60×10(7)(48%) at second AI. It was concluded that short term MGA treated ewes were recorded with lower estrus rates but was similar to pregnancy rates with long term MGA treatment. Acceptable pregnancy rates were achieved in MGA induced estrus when insemination is conducted at 17-18 h after estrus onset and with 20×10(7) sperm per insemination dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号