首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EF-1alpha is an abundant eukaryotic protein whose principle function appears to be to bind aminoacyl-tRNA to the ribosome. However, it is also known that EF-1alpha from other sources binds both microtubules and microfilaments. We report the expression of Zea mays EF-1alpha (ZmEF-1alpha) in bacteria and that this protein has similar actin-binding properties as other EF-1alpha members. ZmEF-1alpha bundles actin filaments at low pH (6.5) and inhibits the addition of monomer at both filament ends, possibly as a consequence. ZmEF-1alpha binds actin filaments at all pH values tested (pH 6.0-8.0), indicating that one actin binding site is not pH sensitive. One of the actin-binding sites was determined to reside within domain I (1-223) of ZmEF-1alpha, but this domain did not affect the kinetics of polymerisation. We show that the bundling activity of ZmEF-1alpha is modulated by ZmADF3 a (a Zea mays ADF/cofilin), an actin filament severing protein, in vitro. Bundling of actin filaments caused by ZmEF-1alpha was enhanced in the presence of ZmADF3. The pH-dependent activities of both proteins in vitro suggests that they may work together to respond to temporal and spatial intracellular pH changes to regulate the pattern of the growth of plant cells.  相似文献   

2.
Fascin is an actin crosslinking protein that organizes actin filaments into tightly packed bundles believed to mediate the formation of cellular protrusions and to provide mechanical support to stress fibers. Using quantitative rheological methods, we studied the evolution of the mechanical behavior of filamentous actin (F-actin) networks assembled in the presence of human fascin. The mechanical properties of F-actin/fascin networks were directly compared with those formed by alpha-actinin, a prototypical actin filament crosslinking/bundling protein. Gelation of F-actin networks in the presence of fascin (fascin to actin molar ratio >1:50) exhibits a non-monotonic behavior characterized by a burst of elasticity followed by a slow decline over time. Moreover, the rate of gelation shows a non-monotonic dependence on fascin concentration. In contrast, alpha-actinin increased the F-actin network elasticity and the rate of gelation monotonically. Time-resolved multiple-angle light scattering and confocal and electron microscopies suggest that this unique behavior is due to competition between fascin-mediated crosslinking and side-branching of actin filaments and bundles, on the one hand, and delayed actin assembly and enhanced network micro-heterogeneity, on the other hand. The behavior of F-actin/fascin solutions under oscillatory shear of different frequencies, which mimics the cell's response to forces applied at different rates, supports a key role for fascin-mediated F-actin side-branching. F-actin side-branching promotes the formation of interconnected networks, which completely inhibits the motion of actin filaments and bundles. Our results therefore show that despite sharing seemingly similar F-actin crosslinking/bundling activity, alpha-actinin and fascin display completely different mechanical behavior. When viewed in the context of recent microrheological measurements in living cells, these results provide the basis for understanding the synergy between multiple crosslinking proteins, and in particular the complementary mechanical roles of fascin and alpha-actinin in vivo.  相似文献   

3.
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker.  相似文献   

4.
To study the morphogenesis of cells caused by the organization of their internal cytoskeletal network, we characterized the transformation of liposomes encapsulating actin and its crosslinking proteins, fascin, alpha-actinin, or filamin, using real-time high-intensity dark-field microscopy. With increasing temperature, the encapsulated G-actin polymerized into actin filaments and formed bundles or gels, depending on the type of actin-crosslinking protein that was co-encapsulated, causing various morphological changes of liposomes. The differences in morphology among transformed liposomes indicate that actin-crosslinking proteins determine liposome shape by organizing their specific actin networks. Morphological analysis reveals that the crosslinking manner, i.e. distance and angular flexibility between adjacent crosslinked actin filaments, is essential for the morphogenesis rather than their binding affinity and stoichiometry to actin filaments.  相似文献   

5.
Drosophila melanogaster bristle development is dependent on actin assembly, and prominent actin bundles form against the elongating cell membrane, giving the adult bristle its characteristic grooved pattern. Previous work has demonstrated that several actin-regulating proteins are required to generate normal actin bundles. Here we have addressed how two actin regulators, capping protein, a barbed end binding protein, and the Arp2/3 complex, a potent actin assembly nucleator, function to generate properly organized bundles. As predicted from studies in motile cells, we find that capping protein and the Arp2/3 complex act antagonistically to one another during bristle development. However, these proteins do not primarily act directly on bundles, but rather on a dynamic population of actin filaments that are not part of the bundles. These nonbundle filaments, termed snarls, play an important role in determining the number and spacing of the actin bundles. Reduction of capping protein leads to an increase in snarls, which prevents actin bundles from properly attaching to the membrane. Conversely, loss of an Arp2/3 complex component leads to a loss of snarls and accumulation of excess membrane-attached bundles. These results indicate that in nonmotile cells dynamic actin filaments can function to regulate the positioning of stable actin structures. In addition, our results suggest that the Arpc1 subunit may have an additional function, independent of the rest of the Arp2/3 complex.  相似文献   

6.
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics.  相似文献   

7.
A method is described for forming two-dimensional (2-D) paracrystalline complexes of F-actin and bundling/gelation proteins on positively charged lipid monolayers. These arrays facilitate detailed structural studies of protein interactions with F-actin by eliminating superposition effects present in 3-D bundles. Bundles of F-actin have been produced using the glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase, the cytoskeletal protein erythrocyte adducin as well as smooth muscle alpha-actinin from chicken gizzard. All of the 2-D bundles formed contain F-actin with a 13/6 helical structure. F-actin-aldolase bundles have an interfilament spacing of 12.6 nm and a superlattice arrangement of actin filaments that can be explained by expression of a local twofold axis in the neighborhood of the aldolase. Well ordered F-actin-alpha-actinin 2-D bundles have an interfilament spacing of 36 nm and contain crosslinks 33 nm in length angled approximately 25-35 degrees to the filament axis. Images and optical diffraction patterns of these bundles suggest that they consist of parallel, unipolar arrays of actin filaments. This observation is consistent with an actin crosslinking function at adhesion plaques where actin filaments are bound to the cell membrane with uniform polarity.  相似文献   

8.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

9.
The actomyosin contractile ring assembles through the condensation of a broad band of nodes that forms at the cell equator in fission yeast cytokinesis. The condensation process depends on actin filaments that interconnect nodes. By mutating or titrating actin cross-linkers α-actinin Ain1 and fimbrin Fim1 in live cells, we reveal that both proteins are involved in node condensation. Ain1 and Fim1 stabilize the actin cytoskeleton and modulate node movement, which prevents nodes and linear structures from aggregating into clumps and allows normal ring formation. Our computer simulations modeling actin filaments as semiflexible polymers reproduce the experimental observations and provide a model of how actin cross-linkers work with other proteins to regulate actin-filament orientations inside actin bundles and organize the actin network. As predicted by the simulations, doubling myosin II Myo2 level rescues the node condensation defects caused by Ain1 overexpression. Taken together, our work supports a cooperative process of ring self-organization driven by the interaction between actin filaments and myosin II, which is progressively stabilized by the cross-linking proteins.  相似文献   

10.
We report the development and characterization of an in vitro system for the formation of filopodia-like bundles. Beads coated with actin-related protein 2/3 (Arp2/3)-activating proteins can induce two distinct types of actin organization in cytoplasmic extracts: (1) comet tails or clouds displaying a dendritic array of actin filaments and (2) stars with filament bundles radiating from the bead. Actin filaments in these bundles, like those in filopodia, are long, unbranched, aligned, uniformly polar, and grow at the barbed end. Like filopodia, star bundles are enriched in fascin and lack Arp2/3 complex and capping protein. Transition from dendritic to bundled organization was induced by depletion of capping protein, and add-back of this protein restored the dendritic mode. Depletion experiments demonstrated that star formation is dependent on Arp2/3 complex. This poses the paradox of how Arp2/3 complex can be involved in the formation of both branched (lamellipodia-like) and unbranched (filopodia-like) actin structures. Using purified proteins, we showed that a small number of components are sufficient for the assembly of filopodia-like bundles: Wiskott-Aldrich syndrome protein (WASP)-coated beads, actin, Arp2/3 complex, and fascin. We propose a model for filopodial formation in which actin filaments of a preexisting dendritic network are elongated by inhibition of capping and subsequently cross-linked into bundles by fascin.  相似文献   

11.
Isolation and characterization of two forms of a cytoskeleton   总被引:8,自引:6,他引:2  
Isolated petaloid coelomocytes from the sea urchin Strongylocentrotus droebachiensis transform to a filopodial morphology in hypotonic media. Electron micrographs of negatively stained Triton-insoluble cytoskeletons show that the petaloid form consists of a loose net of microfilaments while the filopodial form consists of paracrystalline bundles of microfilaments. Actin is the major protein of both forms of the cytoskeleton. Additional polypeptides have molecular weights of approximately 220,000, 64,000, 57,000, and 27,000 daltons. Relative to actin the filopodial cytoskeletons have an average of 2.5 times as much 57k polypeptide as the petaloid cytoskeletons. Treatment with 0.25 M NaCl dissociates the filament bundles into individual actin filaments free of the actin-associated polypeptides. Thus, one or more of these actin-associated polypeptides may be responsible for crosslinking the actin filaments into bundles and maintaining the three-dimensional nature of the cytoskeletons.  相似文献   

12.
Indirect immunofluorescent microscopy was used to study the distribution of eukaryotic elongation factor 2 (EF-2) in cultured mouse embryo fibroblasts. The perinuclear area (endoplasm) of all the cells and many straight cables running along the whole cytoplasm were stained with monospecific goat or rabbit antibodies to rat liver EF-2. Double staining of the cells with antibodies to EF-2 and rhodaminyl-phalloidin (used for actin microfilament detection) showed that EF-2 containing cables coincided with bundles of actin microfilaments. Not all actin microfilament bundles contained EF-2: sometimes EF-2 was not observed in bundles running along the cell edges or in actin microfilament junctions. Triton X-100 extracted most of EF-2 from the cells and no actin microfilament bundles were stained with the EF-2 antibodies in the Triton-extracted cells. Thus, in mouse embryo fibroblasts EF-2 can be found along actin microfilament bundles, but it is unlikely to be their integral protein.  相似文献   

13.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

14.
MAP2 (microtubule-associated protein 2) and tau factor are calmodulin-binding and actin filament-interacting proteins, respectively. We have examined the effect of Ca2+ and calmodulin on MAP-induced actin gelation by the low-shear falling-ball method, the high-speed centrifugation method, and electron microscopy using negative staining. Each MAP crosslinks actin filaments to increase the apparent viscosities and finally to form gels. Calmodulin inhibited MAP2- and tau factor-induced actin gelation (MAP2- and tau factor-actin interaction) only in the presence of Ca2+, but not in its absence. There were no differences in actin filament crosslinking activity of respective MAPs with or without Ca2+. MAP2 was not coprecipitated with F-actin only in the presence of Ca2+ and calmodulin determined by the high-speed centrifugation method. But MAP2 was found to bind to F-actin under any other conditions examined. In contrast, the tau factor-actin filament interaction could only be detected by the low-shear viscosity, but not by the high-speed centrifugation method. MAP2 and tau factor aggregated to form actin bundles as shown by electron microscopy. MAP2- or tau factor-induced bundle formation of actin filaments was inhibited only in the presence of Ca2+ and calmodulin, but not in the presence or absence of Ca2+. In conclusion, the interaction of MAP2- and tau factor-actin filaments is regulated by Ca2+ and calmodulin in a flip-flop switch.  相似文献   

15.
肌动蛋白结合蛋白   总被引:1,自引:0,他引:1  
肌动蛋白结合蛋白是一类调节肌动蛋白聚合、成束或交联的蛋白质,迄今已经发现160多种。通过与肌动蛋白相互作用,直接或间接参与肌动蛋白纤丝的聚合及解聚、纤丝成束与交联,从而介导细胞形态的维持、细胞运动等众多生物学功能。  相似文献   

16.
Binding of actin filaments to connectin   总被引:3,自引:0,他引:3  
The binding of actin filaments to connectin, a muscle elastic protein, was investigated by means of turbidity and sedimentation measurements and electron microscopy. In the presence of less than 0.12 M KCl at pH 7.0, actin filaments bound to connectin. Long actin filaments formed bundles. Short actin filaments also aggregated into irregular bundles or a meshwork, and were frequently attached perpendicularly to long bundles. The binding of F-actin to connectin was saturated at an equal weight ratio (molar ratio, 50 : 1), as determined by a cosedimentation assay. Larger amounts of sonicated short actin filaments appeared to bind to connectin than intact F-actin. Myosin S1-decorated actin filaments did not bind to connectin. The addition of S1 to connectin-induced actin bundles resulted in partial disaggregation. Thus, connectin does not appear to interfere with actin-myosin interactions, since myosin S1 binds to actin more strongly than connectin.  相似文献   

17.
The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.  相似文献   

18.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

19.
When purified muscle actin was mixed with microtubule-associated proteins (MAPs) prepared from brain microtubules assembled in vitro, actin filaments were organized into discrete bundles, 26 nm in diameter. MAP-2 was the principal protein necessary for the formation of the bundles. Analysis of MAP-actin bundle formation by sedimentation and electrophoresis revealed the bundles to be composed of approximately 20% MAP-2 and 80% actin by weight. Transverse striations were observed to occur at 28-nm intervals along negatively stained MAP- actin bundles, and short projections, approximately 12 nm long and spaced at 28-nm intervals, were resolved by high-resolution metal shadowing. The formation of MAP-actin bundles was inhibited by millimolar concentrations of ATP, AMP-PCP (beta, gamma-methylene- adenosine triphosphate), and pyrophosphate but not by AMP, ADP, or GTP. The addition of ATP to a solution containing MAP-actin bundles resulted in the dissociation of the bundles into individual actin filaments; discrete particles, presumably MAP-2, were periodically attached along the splayed filaments. These results demonstrate that MAPs can bind to actin filaments and can induce the reversible formation of actin filament bundles in vitro.  相似文献   

20.
Summary The effects of a protein phosphatase inhibitor, calyculin A (CA), on cytoplasmic streaming and cytoplasmic organization were examined in root hair cells ofLimnobium stoloniferum. CA at concentrations higher than 50 nM inhibited cytoplasmic streaming and also induced remarkable morphological changes in the cytoplasm. The transvacuolar strands, in which actin filament bundles were oriented parallel to the long axis, disappeared and spherical cytoplasmic bodies emerged in the CA-treated cells. In these spherical bodies, actin filaments were present and the spherical bodies were connected to each other by thin strands of actin filaments. Upon CA removal, transvacuolar strands, in which actin filament bundles were aligned, and cytoplasmic streaming reappeared. A nonselective inhibitor for protein kinases, K-252a, delayed the inhibitory effect of CA on cytoplasmic streaming and suppressed the CA-induced formation of the spherical bodies. From these results, it is suggested that phosphatases sensitive to CA regulate cytoplasmic streaming and are involved in the organization of the cytoplasm in root hair cells.Abbreviations APW artificial pond water - CA calyculin A  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号