首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antigen-mediated exocytosis in intact rat basophilic leukemia (RBL-2H3) cells is associated with substantial hydrolysis of membrane inositol phospholipids and an elevation in concentration of cytosol Ca2+ ([ Ca2+i]). Paradoxically, these two responses are largely dependent on external Ca2+. We report here that cells labeled with myo-[3H]inositol and permeabilized with streptolysin O do release [3H]inositol 1,4,5-trisphosphate upon stimulation with antigen or guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) at low (less than 100 nM) concentrations of free Ca2+. The response, however, is amplified by increasing free Ca2+ to 1 microM. The subsequent conversion of the trisphosphate to inositol 1,3,4,5-tetrakisphosphate is enhanced also by the increase in free Ca2+. Although [3H]inositol 1,4,5-trisphosphate accumulates in greater amounts than is the case in intact cells, [3H]inositol 1,4-bisphosphate is still the major product in permeabilized cells even when the further metabolism of [3H]inositol 1,4,5-trisphosphate is suppressed (by 77%) by the addition of excess (1000 microM) unlabeled inositol 1,4,5-trisphosphate and the phosphatase inhibitor 2,3-bisphosphoglycerate. It would appear that either the activity of the membrane 5-phosphomonoesterase allows virtually instantaneous dephosphorylation of the inositol 1,4,5-trisphosphate under all conditions tested or both phosphatidylinositol 4-monophosphate and the 4,5-bisphosphate are substrates for the activated phospholipase C. The latter alternative is supported by the finding that permeabilized cells, which respond much more vigorously to high (supraoptimal) concentrations of antigen than do intact RBL-2H3 cells, produce substantial amounts of [3H]inositol 1,4-bisphosphate before any detectable increase in levels of [3H]inositol 1,4,5-trisphosphate.  相似文献   

2.
Huh YH  Yoo JA  Bahk SJ  Yoo SH 《FEBS letters》2005,579(12):2597-2603
Given the importance of inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels in the control of intracellular Ca(2+) concentrations, we determined the relative concentrations of the IP(3)R isoforms in subcellular organelles, based on serially sectioned electron micrographs. The endoplasmic reticulum (ER) was estimated to contain 15-20% of each of the three IP(3)R isoforms while secretory granules contained 58-69%. The nucleus contained approximately 15% each of IP(3)R-1 and -2, but 25% of IP(3)R-3, whereas the plasma membrane contained approximately 1% or less of each. These suggested that secretory granules, the nucleus and ER are at the center of IP(3)-dependent intracellular Ca(2+) control mechanisms in chromaffin cells.  相似文献   

3.
Cytosolic Ca(2+) is a versatile second messenger that can regulate multiple cellular processes simultaneously. This is accomplished in part through Ca(2+) waves and other spatial patterns of Ca(2+) signals. To investigate the mechanism responsible for the formation of Ca(2+) waves, we examined the role of inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms in Ca(2+) wave formation. Ca(2+) signals were examined in hepatocytes, which express the type I and II InsP3R in a polarized fashion, and in AR4-2J cells, a nonpolarized cell line that expresses type I and II InsP3R in a ratio similar to what is found in hepatocytes but homogeneously throughout the cell. Expression of type I or II InsP3R was selectively suppressed by isoform-specific DNA antisense in an adenoviral delivery system, which was delivered to AR4-2J cells in culture and to hepatocytes in vivo. Loss of either isoform inhibited Ca(2+) signals to a similar extent in AR4-2J cells. In contrast, loss of the basolateral type I InsP3R decreased the sensitivity of hepatocytes to vasopressin but had little effect on the initiation or spread of Ca(2+) waves across hepatocytes. Loss of the apical type II isoform caused an even greater decrease in the sensitivity of hepatocytes to vasopressin and resulted in Ca(2+) waves that were much slower and delayed in onset. These findings provide evidence that the apical concentration of type II InsP3Rs is essential for the formation of Ca(2+) waves in hepatocytes. The subcellular distribution of InsP3R isoforms may critically determine the repertoire of spatial patterns of Ca(2+) signals.  相似文献   

4.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.  相似文献   

5.
In previous works, we synthesized a series of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) analogs, with a substituent on the second carbon of the inositol ring. Using these analogs, the Ins(1,4,5)P3 affinity media were also synthesized (Hirata, M., Watanabe, Y., Ishimatsu, T., Yanaga, F., Koga, T., and Ozaki, S. (1990) Biochem. Biophys. Res. Commun. 168, 379-386). When the cytosol fraction from the rat brain was applied to an Ins(1,4,5)P3 affinity column, an eluate with a 2 M NaCl solution was found to have remarkable Ins(1,4,5)P3-binding activity. The active fraction was further fractionated with gel filtration chromatography, and two proteins with an apparent molecular mass of 130 or 85 kDa were found to be Ins(1,4,5)P3-binding proteins but with no Ins(1,4,5)P3 metabolizing activities. Partial amino acid sequences determined after proteolysis and reversed-phase chromatography revealed that the protein with an apparent molecular mass of 85 kDa is the delta-isozyme of phospholipase C and that of 130 kDa has no sequence the same as the Ins(1,4,5)P3-recognizing proteins hitherto examined. Ins(1,4,5)P3 at concentrations greater than 1 microM strongly inhibited 85-kDa phospholipase C delta activity, without changing its dependence on the concentrations of free Ca2+ and H+. Among inositol phosphates examined, Ins(3,4,5,6)P4 inhibited the binding of [3H]Ins(1,4,5)P3 to the 130-kDa protein at much the same concentrations as seen with Ins(1,4,5)P3. This report seems to be the first evidence for the presence of soluble Ins(1,4,5)P3-binding proteins in the rat brain, one of which is the delta isozyme of phospholipase C.  相似文献   

6.
BACKGROUND INFORMATION: Oscillations of cytosolic Ca2+ are well-known to rely on the regulatory properties of the InsP3R (inositol 1,4,5-trisphosphate receptor). Three isoforms of this channel have been identified. They differ in their regulatory properties by Ca2+ and InsP3. Experiments in different cell types clearly indicate that the relative amounts of each isoform affect the time course of Ca2+ changes after agonist stimulation. In the present study, we investigate whether different steady-state curves for the open probability of the InsP3Rs as a function of Ca2+ imply different dynamical behaviours when these receptors are present in a cellular environment. We therefore describe by a specific phenomenological model the three main types of curves that have been reported: (i) the classical bell-shaped curve, (ii) the bell-shaped curve that is shifted towards higher Ca2+ concentrations when InsP3 is increased, and (iii) a monotonous increasing function of cytosolic Ca2+. RESULTS: We show that, although these types of curves can be ascribed to slight differences in the channel regulation by Ca2+ and InsP3, they can indicate important variations as to the receptor role in cellular Ca2+ control. Thus the receptor associated with the classical bell-shaped curve appears to be the most robust Ca2+ oscillator. If the steady-state curve is supposed to be a monotonous increasing function of cytosolic Ca2+, the modelled receptor cannot sustain Ca2+ oscillations in the absence of Ca2+ exchanges with the extracellular medium. When the bell-shaped curve is shifted towards higher Ca2+ concentrations with increasing InsP3 levels, the model predicts that the receptor is less robust to changes in density; this receptor, however, provides a finer control of the steady-state level of Ca2+ when varying the InsP3 concentration. CONCLUSIONS: Our model allows us to propose an explanation for the experimental observations about the effect of selectively expressing or down-regulating InsP3R isoforms, as well as to make theoretical predictions.  相似文献   

7.
High affinity Ins(1,4,5)P3-binding sites of permeabilized hepatocytes are probably the ligand recognition sites of the receptors that mediate the effects of Ins91,4,5)P3 on intracellular Ca2+ mobilization. We have now solubilized these sites from rat liver membranes in the zwitterionic detergent, CHAPS, and shown that the solubilized bind Ins(1,4,5)P3 with an affinity (Kd = 7.26 ± 0.52 nM, Hill coefficient H = 1.05 ± 0.06) similar to that of the sites in native membranes (Kd = 6.02 ± 0.02). ATP and a range of inositol phosphates (Ins(2,4,5)P3 Ins(4,5)P2, and inositol 1,4,5-trisphosphorothioate) also bound with similar affinities to the native and solubilized sites. Solubilization of the liver InsP3 receptor will allow its further characterization, purification, and comparison of its properties with those of InsP3 receptors already purified from cerebellum and smooth muscle.  相似文献   

8.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

9.
Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM). Ca2+-sensitivity was also seen for the cAMP phosphodiesterase measured under the same assay conditions, but was not for the Ins P3 5-phosphatase. DEAE-cellulose chromatography of the soluble fraction of rat brain or bovine cerebellum resolved a Ca2+/CaM-sensitive Ins P3 3-kinase (maximal stimulation at 1 microM Ins P3 substrate level was 2.0-3.0 fold).  相似文献   

10.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

11.
12.
Three subtypes of inositol 1,4,5-trisphosphate receptor (IP(3)R1, IP(3)R2, and IP(3)R3) Ca(2+) release channel share basic properties but differ in terms of regulation. To what extent they contribute to complex Ca(2+) signaling, such as Ca(2+) oscillations, remains largely unknown. Here we show that HeLa cells express comparable amounts of IP(3)R1 and IP(3)R3, but knockdown by RNA interference of each subtype results in dramatically distinct Ca(2+) signaling patterns. Knockdown of IP(3)R1 significantly decreases total Ca(2+) signals and terminates Ca(2+) oscillations. Conversely, knockdown of IP(3)R3 leads to more robust and long lasting Ca(2+) oscillations than in controls. Effects of IP(3)R3 knockdown are surprisingly similar in COS-7 cells that predominantly (>90% of total IP(3)R) express IP(3)R3, suggesting that IP(3)R3 functions as an anti-Ca(2+)-oscillatory unit without contributing to peak amplitude of Ca(2+) signals, irrespective of its relative expression level. Therefore, differential expression of the IP(3)R subtype is critical for various forms of Ca(2+) signaling, and, particularly, IP(3)R1 and IP(3)R3 have opposite roles in generating Ca(2+) oscillations.  相似文献   

13.
Huh YH  Kim KD  Yoo SH 《Biochemistry》2007,46(49):14032-14043
The nucleus also contains the inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ channels in the nucleoplasm proper independent of the nuclear envelope or the cytoplasm. The nuclear IP3R/Ca2+ channels were shown to be present in small IP3-dependent nucleoplasmic Ca2+ store vesicles, yet no information is available regarding the IP3 sensitivity of nuclear IP3R/Ca2+ channels. Here, we show that nuclear IP3R/Ca2+ channels are 3-4-fold more sensitive to IP3 than cytoplasmic ones in both neuroendocrine PC12 cells and nonneuroendocrine NIH3T3 cells. Given the presence of phosphoinositides and phospholipase C and the importance of IP3-mediated Ca2+ signaling in the nucleus, the high IP3 sensitivity of nuclear IP3R/Ca2+ channels seemed to reflect the physiological needs of the nucleus to finely control the IP3-dependent Ca2+ concentrations. It was further shown that the IP3R/Ca2+ channels of secretory cells are 7-8-fold more sensitive to IP3 than those of nonsecretory cells. This difference appeared to result from the presence of secretory cell marker protein chromogranins (thus secretory granules) in secretory cells; expression of chromogranins in NIH3T3 cells increased the IP3 sensitivity of both nuclear and cytoplasmic IP3R/Ca2+ channels by approximately 4-6-fold. In contrast, suppression of chromogranin A expression in PC12 cells changed the EC50 of IP3 sensitivity for cytoplasmic IP3R/Ca2+ channels from 17 to 47 nM, whereas suppression of chromogranin B expression changed the EC50 of cytoplasmic IP3R/Ca2+ channels from 17 to 102 nM and the nuclear ones from 4.3 to 35 nM. Given that secretion is the major function of secretory cells and is under a tight control of intracellular Ca2+ concentrations, the high IP3 sensitivity appears to reflect the physiological roles of secretory cells.  相似文献   

14.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

15.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel which upon activation initiates many cellular functions. Multiple InsP3R subtypes are expressed in most cell types but the physiological significance of this heterogeneity is poorly understood. This study has directly compared the functional properties of the three different InsP3R isoforms by analyzing their InsP3-induced Ca2+ release (IICR) properties in cell lines which predominantly express each isoform subtype. The InsP3-dependence of the amount or extent of IICR was InsP3R isoform-specific, with the type III isoform having the lowest affinity with respect to Ca2+ release. The transient kinetics of IICR, measured using stopped-flow spectrofluorimetry, however, were similar for all three InsP3R isoforms. At maximal InsP3 concentrations (20 microM) the rate constants where between 0.8 and 1.0 s(-1) for the fast phase and 0.25-0.45 s(-1) for the slow phase. The concentration of InsP3 required to induce half-maximal rates of Ca2+ release (EC50) were also similar for the three isoforms (0.2-0.4 microM for the fast phase and 0.75-0.95 microM for the slow phase). These results indicate the InsP3R channel does not significantly differ functionally in terms of Ca2+ release rates between isoforms. The temporal and spatial features of intracellular Ca2+ signals are thus probably achieved through InsP3R isoform-specific regulation or localization rather than their intrinsic Ca2+ efflux properties.  相似文献   

16.
Structure and expression of the rat inositol 1,4,5-trisphosphate receptor   总被引:23,自引:0,他引:23  
The complete primary structure of the inositol 1,4,5-trisphosphate receptor from rat brain was elucidated using a series of overlapping cDNA clones. Two different sets of clones that either contain or lack a 45-nucleotide sequence in the amino-terminal third of the protein were isolated, suggesting a differential splicing event that results in the biosynthesis of either a 2734- or 2749-amino acid receptor protein. Hydrophobicity analysis demonstrates the presence of a cluster of hydrophobic sequences in the carboxyl-terminal third of the protein that probably comprise eight transmembrane regions and that may form the calcium channel intrinsic to the receptor. The receptor was universally expressed at low levels in all tissues and cultured cells tested. Transfection of a full-length expression construct of the inositol 1,4,5-trisphosphate receptor into COS cells resulted in the biosynthesis of a 260-kDa protein that bound inositol 1,4,5-trisphosphate and formed high molecular weight complexes similar to the native receptor as analyzed by sucrose gradient centrifugations. On the other hand, the protein product synthesized by a mutant receptor construct in which the amino-terminal 418 amino acids were deleted failed to bind inositol 1,4,5-trisphosphate. The mutant receptor still formed high molecular weight complexes, suggesting that it folded normally and that the amino-terminal sequences of the receptor are part of the ligand binding domain.  相似文献   

17.
Hormonal regulation of inositol 1,4,5-trisphosphate receptor in rat liver   总被引:4,自引:0,他引:4  
Inositol 1,4,5-trisphosphate (IP3) is a second messenger which induces Ca2+ release from an intracellular store. We have investigated the properties of the [32P]IP3 binding sites in rat liver. Two specific [32P]IP3 receptors with KD of 2.3 and 88 nM and respective capacities of 33 fmol/mg protein and 195 fmol/mg protein have been detected in a crude membrane fraction prepared from rat liver homogenate. The pretreatment of the liver with IP3-dependent hormones increased two-fold the capacity of the high affinity site. This effect was partly reversed by dibutyryl cyclic AMP. Permeabilized hepatocytes also displayed two [32P]IP3 binding sites with KD of 1.5 and 84 nM and respective capacities of 8 and 300 fmol/10(6) cells. We have measured the [32P]IP3 binding and the IP3-induced 45Ca2+ release in the same batch of permeabilized hepatocytes. In a low Mg2+ medium, the EC50 for 45Ca2+ release was in close correlation with the KD for the low affinity site. These data suggest that an equilibrium between two states of the IP3 receptor is regulated by hormone action and the low affinity state is responsible for the intracellular Ca2+ release.  相似文献   

18.
Expression patterns of sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase (SERCA) and inositol 1,4,5-trisphosphate receptor (IP3R) isoforms were studied in endothelial cells at the mRNA level by ratio RT-PCR technique and subsequent restriction-enzyme analysis. Three types of cells have been used in the present study: rat adrenal medulla microvascular endothelial cells (RAMEC), rat aortic endothelial cells (RAEC), and human umbilical vein endothelial cells (HUVEC). Our data show the presence of multiple SERCA and IP3R isoforms in each type of endothelial cells. Freshly isolated HUVEC were an exception in this respect since they contained only SERCA3 without SERCA2b messengers. The expression patterns changed upon cell proliferation: SERCA3 and IP3R-1 messengers decreased, while IP3R-3 increased with culturing. Upon cell differentiation, induced by culturing the cells on Matrigel, the expression pattern of the IP3R changed even further in all endothelial cell types: IP3R-1 was reduced in all three cell kinds, while IP3R-3 raised significantly in RAEC and RAMEC. In HUVEC the expression of SERCA returned, upon differentiation, to the levels observed in the freshly isolated cells. Thus, the plasticity of expression of various SERCA and IP3R isoforms shows that possibly different Ca2+ pools may play distinct roles in cell proliferation and differentiation.  相似文献   

19.
Studies in the Xenopus model system have provided considerable insight into the developmental role of intracellular Ca2+ signals produced by activation of IP3Rs (inositol 1,4,5-trisphosphate receptors). However, unlike mammalian systems where three IP3R subtypes have been well characterized, our molecular understanding of the IP3Rs that underpin Ca2+ signalling during Xenopus embryogenesis relate solely to the original characterization of the 'Xenopus IP3R' cloned and purified from Xenopus laevis oocytes several years ago. In the present study, we have identified Xenopus type 2 and type 3 IP3Rs and report the full-length sequence, genomic architecture and developmental expression profile of these additional IP3R subtypes. In the light of the emerging genomic resources and opportunities for genetic manipulation in the diploid frog Xenopus tropicalis, these data will facilitate manipulations to resolve the contribution of IP3R diversity in Ca2+ signalling events observed during vertebrate development.  相似文献   

20.
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号