首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three new mutant alleles of maize alcohol dehydrogenase-1 (Adh 1) were recovered following allyl alcohol selection of pollen. Each is altered in quantitative, organ-specific, regulatory properties. All mutant sites act in cis to the structural gene component. One mutant arose spontaneously, one followed indirectly from irradiation with high Z accelerated particles, and one was induced by an autonomous mutator system. Each mutant is assessed in three organs by utilizing ADH allozyme ratios that were quantified at the level of ADH enzyme activity and either [3H]-Leu incorporation into newly synthesized ADH 1 subunits or direct protein determinations. One mutation simultaneously raises Adh 1 expression in one organ and lowers it in another, another affects expression in one organ only, and another is extremely underexpressed in all organs but is unstable. This unstable allele has generated derivative mutant alleles that have less or zero ADH expression. We do not yet know whether or not coding sequences are involved in these mutants. We conclude that information for organ specificity and quantitative behavior resides near or within Adh 1 coding sequences.  相似文献   

3.
Insertion of the maize transposable element Mu-1 into the first intron of the alcohol dehydrogenase locus (Adh1) of maize produced mutant Adh1-S3034 with 40% of the wild-type level of protein and mRNA. Continued instability at this locus resulted in secondary mutations with lower levels of protein expression. One of these, Adh1-S3034a, has no detectable ADH1 expression. This paper describes the precise nature of the changes in the Adh1 gene that gave rise to the S3034a allele. The Mu-1 element is still present in the mutant, but Adh1 sequences immediately adjacent to the element are deleted. The deletion starts precisely at the Mu-1 insertion site and extends 74 bp leftward removing part of the first intron, the intron:exon junction and 2 bp of the eleventh amino acid codon in the first exon of the gene. Tests for reversion within the somatic tissue of plants show that mutant S3034a, unlike its progenitor, is stably null for ADH1 activity.  相似文献   

4.
5.
6.
A secondary mutant, derived from an allele of maize alcohol dehydrogenase 1 (Adh1) carrying a Mutator transposable element (Mu1) in its first intron, was reported to exhibit a threefold decrease in ADH enzymatic activity and steady-state RNA levels compared to the original mutant. The original mutant,Adh1-S3034 (abbreviatedS3034), was previously characterized at the molecular level. The derivative, abbreviatedS3034b, has now been cloned; at the DNA sequence level the insertion and surroundingAdh1 sequences are indistinguishable fromS3034. Furthermore, in our lines there is no difference in relative ADH activities between products of the two putative alleles. A comparison of gene expression in heterozygotes obtained by crossing to different tester lines reveals a correlation between the measured decrease in levels of ADH polypeptide produced by the mutant allele and the background in which it is measured; this effect is distinct from any background-related variation in the expression of the progenitor allele. It does not appear to be attributable to alternative patterns of DNA modification. It appears to reflect a background-associated difference in the level of normalAdh1-RNA produced. Thus the previously reported distinction betweenS3034 andS3034b may be due to differences in the extent to which the mutant allele and a given genetic background interact to produce functionalAdh1-RNA.This research was supported by United States Public Health Service Grant GM38616 and United States Department of Agriculture Grant 87-CRCR-1-2500 to J.S. D.O. was supported by an NIH predoctoral training grant to the Department of Genetics.  相似文献   

7.
8.
We have examined the role of alcohol dehydrogenase (ADH, E.C.1.1.1.1) in chilling tolerance using maize (Zea mays L.) Adh1(-)Adh2(-) doubly null mutant. Adh1(-)Adh2(-) doubly null seedlings were found to have lowered survival rates compared to non-doubly null maize seedlings (Silverado F(1)) when held at 2 degrees C for varying periods. Exposure to ethanol did not increase the chilling tolerance in either Silverado F(1) or Adh1(-)Adh2(-) doubly null. ADH activity in Silverado F(1) remained steady when held at 2 degrees C for up to 3 d. ADH1 protein accumulation in chilled Silverado F(1) seedlings remained unchanged throughout the period of cold exposure. Chilling led to a significant inhibition of the P-H(+)-ATPase (E.C. 3.6.3.6) activity in Adh1(-)Adh2(-)doubly null, but minimal inhibition was seen in Silverado F(1). Though P-H(+)-ATPase activity in Adh1(-)Adh2(-) decreased, P-H(+)-ATPase protein levels remained constant during the chilling period. Levels of ATP slightly fluctuated in both types of seedlings during the duration of chilling. Lipid peroxidation levels in Adh1(-)Adh2(-) doubly null increased with chilling exposure, but not in the Silverado F(1). We suggest that ADH activity may play a role in chilling tolerance that is not related to maintenance of glycolysis and ATP production as has been observed during oxygen depravation.  相似文献   

9.
Site-selected transposon mutagenesis at the hcf106 locus in maize.   总被引:6,自引:1,他引:5       下载免费PDF全文
The High chlorophyll fluorescence106 (Hcf106) gene in maize is required for chloroplast membrane biogenesis, and the hcf106-mum1 allele is caused by the insertion of a Robertson's Mutator Mu1 element into the promoter of the gene. Seedlings homozygous for hcf106-mum1 are pale green and die 3 weeks after germination, but only in the presence of Mutator activity conferred by active, autonomous Mu regulatory transposons elsewhere in the genome. When Mutator activity is lost, the mutant phenotype is suppressed, and homozygous plants have an almost wild-type phenotype. To isolate derivative alleles at the hcf106 locus that no longer require Mutator activity for phenotypic expression, we have developed a method for site-selected transposon mutagenesis in maize. This procedure, first described for Caenorhabditis elegans and Drosophila, involves using polymerase chain reaction (PCR) to screen pools of individuals for insertions and deletions in genes of known sequence. Pools of seedlings segregating for the progenitor allele hcf106-mum1 were screened by PCR for insertions and deletions associated with Robertson's Mutator. In a 360-bp target region, two new insertions and one deletion were identified in only 700 Mu-active gametes screened. One of the insertions was in the progenitor hcf106-mum1 allele and the other was in the wild-type allele, but all three new alleles were found to have break-points at the same nucleotide in the first intron. Unlike the hcf-106-mum1 progenitor allele, the deletion and one of the insertions conferred pale green seedling lethal phenotypes in the absence of mutator activity. However, the second insertion had a weak, viable phenotype under these conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Anaerobic tolerant null (ATN) is a recessive factor that allows alcohol dehydrogenase-1 (ADH1) null individuals of Zea mays L. to survive 24 h of anaerobic conditions. ADH1 null lines that do not possess this factor survive only a few hours of anoxia. We studied ADH activity levels in protein extracts from the primary root tissue of ATN. ADH levels were similar in ATN and other ADH1 null lines, suggesting that ADH activity does not account for differences in the ability of ATN to survive anaerobic treatment. The ATN survival trait segregated as a single recessive locus in crosses between ATN and double null (Adh1-S5657, Adh2-33). We also made crosses between ATN and 1s2p, an inbred line with ADH1 activity that carries an electrophoretic mutation of Adh2, to determine whether atn increases the number of survivors over that which would be expected from the segregation of Adh1 alone and to use the Adh2P allele to study the cosegregation of Adh2 and atn. The observed number of survivors in that cross exceeded the expected number of survivors by a margin consistent with a single recessive gene adding to the ADH+ survivors. Extracts from the primary root or scutellum of induced F2 seedlings from the above crosses were assayed for ADH activity by native polyacrylamide gel electrophoresis (PAGE) and simultaneously scored for survival to determine whether Adh2 and atn were segregating independently. We screened the (ATN x 1s2p)F2 progeny for ADH1 activity by staining root tips with an ADH-specific stain to select Adh1 null individuals prior to gel assay. Atn was found to be assorting independently of Adh1 and Adh2 in both crosses.  相似文献   

12.
Woodman JC  Freeling M 《Genetics》1981,98(2):357-378
Allozyme balances serve as markers of quantitative behavior of electrophoretically distinguishable alleles. By the use of ADH Set I allozyme balances, it is demonstrated that all Adh1-S/Adh1-F individuals from more than 20 diverse S/F families exhibit a reciprocal correlation between Adh1 quantitative behavior in two maize organs: the scutellum and primary root. Within an electrophoretic mobility class, the Adh1 allele that is relatively underexpressed in the scutellum is relatively overexpressed in the primary root, and vice versa. Segregation tests prove that this "reciprocal effect" is the property of a cis-acting site that is closely linked to or within the Adh1 structural gene, and it is not affected by diverse genetic backgrounds. Immunological and [(3)H]-leucine incorporation experiments establish that Adh1 quantitative variants differ in ADH1.ADH1 synthetic rates in the anaerobic primary root. The reciprocal-effect phenomenon suggests that the cis-acting loci controlling Adh1 quantitative expression in each respective organ are at least in close proximity, or may share common DNA sequences. We discuss the possibility that the reciprocal-effect locus is a regulatory component of the Adh1 cistron.  相似文献   

13.
14.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

15.
16.
17.
In vivo levels of enzymatic activity may be increased through either structural or regulatory changes. Here we use Drosophila melanogaster alcohol dehydrogenase (ADH) in an experimental test for selective differences between these two mechanisms. The well-known ADH-Slow (S)/Fast (F) amino acid replacement leads to a twofold increase in activity by increasing the catalytic efficiency of the enzyme. Disruption of a highly conserved, negative regulatory element in the Adh 3' UTR also leads to a twofold increase in activity, although this is achieved by increasing in vivo Adh mRNA and protein concentrations. These two changes appear to be under different types of selection, with positive selection favoring the amino acid replacement and purifying selection maintaining the 3' UTR sequence. Using transgenic experiments we show that deletion of the conserved 3' UTR element increases adult and larval Adh expression in both the ADH-F and ADH-S genetic backgrounds. However, the 3' UTR deletion also leads to a significant increase in developmental time in both backgrounds. ADH allozyme type has no detectable effect on development. These results demonstrate a negative fitness effect associated with Adh overexpression. This provides a mechanism whereby natural selection can discriminate between alternative pathways of increasing enzymatic activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号