首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Rhodospirillum centenum is a photosynthetic bacterium capable of undergoing swim cell to swarm cell differentiation that allows this species to be motile on both liquid and solid media. Previous experiments have demonstrated that the che1 operon is required for the control of chemotactic and phototactic behaviour of both swim and swarm cells. In this report, we analyse the function of a second che-like gene cluster in R. centenum, the che2 gene cluster. In-frame deletion mutants of cheW2, cheB2, cheR2, cheY2, and of the entire che2 operon, exhibit defects in swim and swarm cell motility. Analysis of these strains demonstrates that they are non-motile, and that the non-motile phenotype is resulting from reduced polar and lateral flagella synthesis. Additionally, mutations in mcp2, ORF204, cheA2 and ORF74 remain chemotacticly and phototacticly competent at both high and low growth temperatures. Mutations in these che2 genes result in elevated levels of flagellin proteins giving rise to a hyperflagellate phenotype. We propose a model in which R. centenum utilizes a che-like signal transduction pathway (che2) for regulating flagellum synthesis in order to optimize swim cell-swarm cell differentiation in response to changing environmental conditions.  相似文献   

2.
Z Y Jiang  H Gest    C E Bauer 《Journal of bacteriology》1997,179(18):5720-5727
The chemotaxis gene cluster from the photosynthetic bacterium Rhodospirillum centenum contains five open reading frames (ORFs) that have significant sequence homology to chemotaxis genes from other bacteria. To elucidate the functions of each ORF, we have made various mutations in the gene cluster and analyzed their phenotypic defects. Deletion of the entire che operon (delta che), as well as nonpolar disruptions of cheAY, cheW, and cheR, resulted in a smooth-swimming phenotype, whereas disruption of cheB resulted in a locked tumbly phenotype. Each of these mutants was defective in chemotactic response. Interestingly, disruption of cheY resulted in a slight increase in the frequency of tumbling/reversal with no obvious defects in chemotactic response. In contrast to observations with Escherichia coli and several other bacteria, we found that all of the che mutant cells were capable of differentiating into hyperflagellated swarmer cells when plated on a solid agar surface. When viewed microscopically, the smooth-swimming che mutants exhibited active surface motility but were unable to respond to a step-down in light intensity. Both positive and negative phototactic responses were abolished in all che mutants, including the cheY mutant. These results indicate that eubacterial photosensory perception is mediated by light-generated signals that are transmitted through the chemotaxis signal transduction cascade.  相似文献   

3.
Gliding motility in the developmental bacterium Myxococcus xanthus involves two genetically distinct motility systems, designated adventurous (A) and social (S). Directed motility responses, which facilitate both vegetative swarming and developmental aggregation, additionally require the 'frizzy' (Frz) signal transduction pathway. In this study, we have analysed a new gene (frzS), which is positioned upstream of the frzA-F operon. Insertion mutations in frzS caused both vegetative spreading and developmental defects, including 'frizzy' aggregates in the FB strain background. The 'frizzy' phenotype was previously considered to result only from defective directed motility responses. However, deletion of the frzS gene in an A-S+ motility background demonstrated that FrzS is a new component of the S-motility system, as the A-frzS double mutant was non-spreading (A-S-). Compared with known S-motility mutants, the frzS mutants appear similar to pilT mutants, in that both produce type IV pili, extracellular fibrils and lipopolysaccharide (LPS) O-antigen, and both agglutinate rapidly in a cohesion assay. The FrzS protein has an unusual domain composition for a bacterial protein. The N-terminal domain shows similarity to the receiver domains of the two-component response regulator proteins. The C-terminal domain is composed of up to 38 heptad repeats (a b c d e f g)38, in which residues at positions a and d are predominantly hydrophobic, whereas residues at positions e and g are predominantly charged. This periodic disposition of specific residues suggests that the domain forms a long coiled-coil structure, similar to those found in the alpha-fibrous proteins, such as myosin. Overexpression of this domain in Escherichia coli resulted in the formation of an unusual striated protein lattice that filled the cells. We speculate on the role that this novel protein could play in gliding motility.  相似文献   

4.
Serratia marcescens swarms at 30 degrees C but not at 37 degrees C on a nutrient-rich (LB) agar surface. Mini-Tn5 mutagenesis of S. marcescens CH-1 yielded a mutant (WC100) that swarms not only vigorously at 37 degrees C but also earlier and faster than the parent strain swarms at 30 degrees C. Analysis of this mutant revealed that the transposon was inserted into a gene (rssA) predicted to encode a bacterial two-component signal transduction sensor kinase, upstream of which a potential response regulator gene (rssB) was located. rssA and rssB insertion-deletion mutants were constructed through homologous recombination, and the two mutants exhibited similar swarming phenotypes on LB swarming agar, in which swarming not only occurred at 37 degrees C but also initiated at a lower cell density, on a surface with a higher agar concentration, and more rapidly than the swarming of the parent strain at 30 degrees C. Both mutants also exhibited increased hemolysin activity and altered cell surface topologies compared with the parent CH-1 strain. Temperature and certain saturated fatty acids (SFAs) were found to negatively regulate S. marcescens swarming via the action of RssA-RssB. Analysis of the fatty acid profiles of the parent and the rssA and rssB mutants grown at 30 degrees C or 37 degrees C and under different nutrition conditions revealed a relationship between cellular fatty acid composition and swarming phenotypes. The cellular fatty acid profile was also observed to be affected by RssA and RssB. SFA-dependent inhibition of swarming was also observed in Proteus mirabilis, suggesting that either SFAs per se or the modulation of cellular fatty acid composition and hence homeostasis of membrane fluidity may be a conserved mechanism for regulating swarming motility in gram-negative bacteria.  相似文献   

5.
6.
The Frz chemosensory system controls directed motility in Myxococcus xanthus by regulating cellular reversal frequency. M. xanthus requires the Frz system for vegetative swarming on rich media and for cellular aggregation during fruiting body formation on starvation media. The Frz signal transduction pathway is formed by proteins that share homology with chemotaxis proteins from enteric bacteria, which are encoded in the frzA-F putative operon and the divergently transcribed frzZ gene. FrzCD, the Frz system chemoreceptor, contains a conserved C-terminal module present in methyl-accepting chemotaxis proteins (MCPs); but, in contrast to most MCPs, FrzCD is localized in the cytoplasm and the N-terminal region of FrzCD does not contain transmembrane or sensing domains, or even a linker region. Previous work on the Frz system was limited by the unavailability of deletion strains. To understand better how the Frz system functions, we generated a series of in-frame deletions in each of the frz genes as well as regions encoding the N-terminal portion of FrzCD. Analysis of mutants containing these deletions showed that FrzCD (MCP), FrzA (CheW) and FrzE (CheA-CheY) control vegetative swarming, responses to repellents and directed movement during development, thus constituting the core components of the Frz pathway. FrzB (CheW), FrzF (CheR), FrzG (CheB) and FrzZ (CheY-CheY) are required for some but not all responses. Furthermore, deletion of approximately 25 amino acids from either end of the conserved C-terminal region of FrzCD results in a constitutive signalling state of FrzCD, which induces hyper-reversals with no net cell movement. Surprisingly, deletion of the N-terminal region of FrzCD shows only minor defects in swarming. Thus, signal input to the Frz system must be sensed by the conserved C-terminal module of FrzCD and not the usual N-terminal region. These results indicate an alternative mechanism for signal sensing with this cytoplasmic MCP.  相似文献   

7.
8.
A large chemotaxis operon was identified in Rhodobacter sphaeroides WS8-N using a probe based on the 3' terminal portion of the Rhizobium meliloti cheA gene. Two genes homologous to the enteric cheY were identified in an operon also containing cheA , cheW , and cheR homologues. The deduced protein sequences of che gene products were aligned with those from Escherichia coli and shown to be highly conserved. A mutant with an interrupted copy of cheA showed normal patterns of swimming, unlike the equivalent mutants in E. coli which are smooth swimming. Tethered cheA mutant cells showed normal responses to changes in organic acids, but increased, inverted responses to sugars. The unusual behaviour of the cheA mutant and the identification of two homologues of cheY suggests that R. sphaeroides has at least two pathways controlling motor activity. To identify functional similarity between the newly identified R. sphaeroides Che pathway and the methyl-accepting chemotaxis protein (MCP)-dependent pathway in enteric bacteria, the R. sphaeroides cheW gene was expressed in a cheW mutant strain of E. coli and found to complement, causing a partial return to a swarming phenotype. In addition, expression of the R. sphaeroides gene in wild-type E. coli resulted in the same increased tumbling and reduced swarming as seen when the native gene is over-expressed in E. coli . The identification of che homologues in R. sphaeroides and complementation by cheW suggests the presence of MCPs in an organism previously considered to use only MCP-independent sensing. The MCP-dependent pathway, appears conserved. In R. sphaeroides this pathway may mediate responses to sugars, while responses to organic acids may in involve a second system, possibly using the second CheY protein identified in this study.  相似文献   

9.
The chemotaxis system, but not chemotaxis, is essential for swarming motility in Salmonella enterica serovar Typhimurium. Mutants in the chemotaxis pathway exhibit fewer and shorter flagella, downregulate class 3 or 'late' motility genes, and appear to be less hydrated when propagated on a surface. We show here that the output of the chemotaxis system, CheY approximately P, modulates motor bias during swarming as it does during chemotaxis, but for a distinctly different end. A constitutively active form of CheY was found to promote swarming in the absence of several upstream chemotaxis components. Two point mutations that suppressed the swarming defect of a cheY null mutation mapped to FliM, a protein in the motor switch complex with which CheY approximately P interacts. A common property of these suppressors was their increased frequency of motor reversal. These and other data suggest that the ability to switch motor direction is important for promoting optimal surface wetness. If the surface is sufficiently wet, exclusively clockwise or counterclockwise directions of motor rotation will support swarming, suggesting also that the bacteria can move on a surface with flagellar bundles of either handedness.  相似文献   

10.
The nucleotide sequence of a region downstream of the Listeria monocytogenes flagellin gene, flaA, revealed two putative chemotaxis genes, cheY and cheA. These genes have been shown to be transcribed as a bicistronic unit. In this study Tn916 delta E mutagenesis was used to generate two mutants, PF10 and PF16, which contain transposon inserts in the promoter region of this operon. These mutants were motile in liquid, but had reduced flagellin expression and were unable to burrow or swarm on soft agar plates. Complementation of the single transposon-copy mutant PF16 with cloned cheY and cheA in trans partially restored microaerotaxis and swarming on soft agar. The complemented strain did not exhibit any increase in flagellin production. Both PF10 and PF16 appear deficient in their ability to attach to the mouse fibroblast cell line 3T3.  相似文献   

11.
目前已知苜蓿中华根瘤菌(S.meliloti)Rm1021 ExpR 突变导致胞外多糖Ⅱ(EPSⅡ)的过量表达,而胞外多糖是根瘤菌成功侵染宿主植物形成有效根瘤必需的物质。软琼脂板实验发现ExpR 突变株运动能力有缺陷。但是鞭毛染色实验并没有检测到突变株的鞭毛与野生型有什么不同。通过启动子-lacZ融合子进一步研究突变株中基因表达的差异发现,ExpR以细胞密度依赖的方式调节motC操纵子的表达。由此可见,在苜蓿中华根瘤菌中,ExpR同时参与了胞外多糖Ⅱ的合成和细胞运动能力的调节。  相似文献   

12.
13.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC1 and PC2, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were fully motile but incapable of swarming, suggesting that they had a defect in the intracellular signalling pathway. Computer-assisted capillary assays confirmed that they failed to show behavioral responses to chemical stimuli, including peptone, methyl thiocyanate, and phosphate. Two chemotaxis genes were cloned by phenotypic complementation of PC1 and PC2. From nucleotide sequence analysis, one gene was found to encode a putative polypeptide that was homologous to the enteric CheZ protein, while the other gene was cheY, which had been previously reported (M. N. Starnbach and S. Lory, Mol. Microbiol. 6:459-469, 1992). Deletion and complementation analysis showed that PC1 was a cheY mutant, whereas PC2 had a double mutation in the cheY and cheZ genes. A chromosomal cheZ mutant, constructed by inserting a kanamycin resistance gene cassette into the wild-type gene, changed its swimming direction much more frequently than did wild-type strain PAO1. In contrast, cheY mutants were found to rarely reverse their swimming directions.  相似文献   

14.
The α-proteobacterium, Rhodospirillum centenum, has a complex life cycle that allows adaptation to different environments. Transitions between vegetative swim cell and swarmer cell types depend on whether the organism is growing in liquid surroundings or on a solid substrate. Moreover, starvation can induce vegetative cells to differentiate into quiescent cysts. This paper describes the results of our investigation into the role of a putative DNA-binding response regulator that is homologous to CtrA, the cell cycle regulator from Caulobacter crescentus. Deletion of ctrA from the R. centenum genome resulted in a viable strain with impaired swarming motility coupled with an increased tendency to form cysts. Conversely, overexpression of wild type CtrA or a phosphomimetic allele, CtrAD51E, suppressed cyst cell formation, whereas overexpression of a CtrAD51A allele failed to suppress encystment but did prevent swarming motility. Thus, we propose that CtrA participates within a two-component signal transduction pathway that promotes swarming motility while contributing to the suppression of cyst cell formation.  相似文献   

15.
A chemotaxis signal transduction pathway (hereafter called Che1) has been previously identified in the alphaproteobacterium Azospirillum brasilense. Previous experiments have demonstrated that although mutants lacking CheB and/or CheR homologs from this pathway are defective in chemotaxis, a mutant in which the entire chemotaxis pathway has been mutated displayed a chemotaxis phenotype mostly similar to that of the parent strain, suggesting that the primary function of this Che1 pathway is not the control of motility behavior. Here, we report that mutants carrying defined mutations in the cheA1 (strain AB101) and the cheY1 (strain AB102) genes and a newly constructed mutant lacking the entire operon [Δ(cheA1-cheR1)::Cm] (strain AB103) were defective, but not null, for chemotaxis and aerotaxis and had a minor defect in swimming pattern. We found that mutations in genes of the Che1 pathway affected the cell length of actively growing cells but not their growth rate. Cells of a mutant lacking functional cheB1 and cheR1 genes (strain BS104) were significantly longer than wild-type cells, whereas cells of mutants impaired in the cheA1 or cheY1 genes, as well as a mutant lacking a functional Che1 pathway, were significantly shorter than wild-type cells. Both the modest chemotaxis defects and the observed differences in cell length could be complemented by expressing the wild-type genes from a plasmid. In addition, under conditions of high aeration, cells of mutants lacking functional cheA1 or cheY1 genes or the Che1 operon formed clumps due to cell-to-cell aggregation, whereas the mutant lacking functional CheB1 and CheR1 (BS104) clumped poorly, if at all. Further analysis suggested that the nature of the exopolysaccharide produced, rather than the amount, may be involved in this behavior. Interestingly, mutants that displayed clumping behavior (lacking cheA1 or cheY1 genes or the Che1 operon) also flocculated earlier and quantitatively more than the wild-type cells, whereas the mutant lacking both CheB1 and CheR1 was delayed in flocculation. We propose that the Che1 chemotaxis-like pathway modulates the cell length as well as clumping behavior, suggesting a link between these two processes. Our data are consistent with a model in which the function of the Che1 pathway in regulating these cellular functions directly affects flocculation, a cellular differentiation process initiated under conditions of nutritional imbalance.  相似文献   

16.
The motility and chemotaxis system are critical for the virulence of pathogenic leptospire, which enable them to penetrate host tissue barriers during infection. The completed genome sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroups Icterohaemorrhagiae (L. interrogans strain Lai) suggested that there were multiple copies of putative chemotaxis homologues located at its large chromosome. In order to verify the function of these proteins, the putative cheY genes were cloned into pQE31 vector and then expressed, respectively, in wild-type Escherichia coli strain RP437 and cheY defective strain RP5232. The results showed that all the five cheYs could restore the swarming of RP5232 strain to some extend. Overexpression of CheYs in RP437 showed inhibited swarming of RP437. To investigate the mechanism of chemotaxis signaling in L. interrogans strain Lai, certain aspartates (Asp-53, Asp-61, Asp-70, Asp-62, and Asp-66 for L. interrogans strain Lai CheY1, CheY2, CheY3, CheY4, and CheY5, respectively) were mutated. Expression of these mutated cheYs manifested neither restoration of the swarming ability of RP5232 nor inhibition on swarming ability of RP437. Multiple amino acid sequence alignment predicted ternary structures and the result of mutation experiment suggested that these conserved aspartate residues of L. interrogans were analogous to that in E. coli CheY in function and structure. So, L. interrogans and E. coli may have similar mechanisms of activation of the chemotaxis phosphorelay pathway, but there are differences in their control by signal terminator.  相似文献   

17.
18.
Agrobacterium tumefaciens has a chemtaxis operon, which includes orf1, orf2, cheY1, cheA, cheR, cheB, cheY2, orf9, and orf10. In-frame deletions of cheY1 and cheY2 were constructed and the chemosensory behavior of the mutants was examined on swarm plates and in a chemotaxis assay toward acetosyringone. The cheY2 mutant (C1/delY2) showed impaired chemotactic capabilities in both swarming and chemotaxis assays. The effect of lacking CheY1 on chemotaxis is less severe than that of CheY2, under the conditions studied.  相似文献   

19.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (for frz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority of frz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgA mutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. The frgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgB and frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgC null mutants, however, formed wild-type fruiting bodies.  相似文献   

20.
Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号