首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

2.
This study concerns the effects of four different classes of plant growth regulators on root morphology, patterns of growth and condensed tannin accumulation in transgenic root cultures of Lotus corniculatus L. (Bird's-foot trefoil). Growth of transformed roots in 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in decreased tannin levels relative to controls at concentrations of 10-6 M and above, while gibberellic acid (GA3) inhibited tannin accumulation at concentrations of 10-7 M and above. Benzyladenine (BA) had little effect at low concentrations (10-7 M and below) but resulted in an increase in tannin levels at 10-6 M. Abscisic acid had little effect on levels of condensed tannins at any of the concentrations used. Experiments involving growth regulator addition and medium transfer demonstrated that 2,4-D inhibition of tannin accumulation could be reversed by GA3 and BA, while GA3 downregulation could only be reversed by the addition of 2,4-D. Although 2,4-D inhibited tannin accumulation, addition of 2,4-D to root cultures grown for 14 or 28 days in the absence of plant growth regulators stimulated both growth and tannin biosynthesis. Characteristic alterations in root morphologies accompanied growth regulator-mediated modulation of tannin biosynthesis. Growth in 2,4-D resulted in partially de-differentiated root cultures while growth in GA3 produced roots with an elongated phenotype. Restoration of tannin biosynthesis in 2,4-D-treated roots was accompanied by root re-differentiation and the production of new lateral roots.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid 3 - FW fresh weight  相似文献   

3.
The effects of GA3 and/or ABA on the α-amylase activity and the ultrastructure of aleurone cells in halves of seeds without embryos (embryo-less half seeds) of oats (Avena sativa L.) were studied. α-Amylase activity was detected by the starch-agar gel method in the aleurone layers of embryo-less half seeds soaked in 1 μM GA3 solution or 100 μM GA3+10 μM ABA solution but not in those of seeds soaked in distilled water, 10 μM ABA solution, or 1 μM GA3+10 μM ABA solution. Ultrastructural examinations of aleurone cells with α-amylase activity showed a decrease in the number of sphaerosomes, the appearance of flattened saccules pressed to the surface of aleurone grains, and the development and transformations of the rER from a slender form to the one with wide inner spaces. In the aleurone cells in which the enzyme activity was not detected, components of the rER showed only slender profiles. The number of sphaerosomes did not decrease, and no flattened saccules appeared in the aleurone cells treated with 10 μM ABA or 1 μM GA3+10 μM ABA.  相似文献   

4.
Experiments with Grand Rapids lettuce seeds (Lactuca sativa L.) maintained in darkness or irradiated with red light have shown that the inhibition of germination induced by low concentrations of ABA (2, 4, 6 μM) could be overcome by gibberellins (GA3 or GA4). The same results were obtained, although to a lesser extent, under the influence of two out of the four cytokinins tested (K and BAP) for seeds maintained in darkness. To suppress the block induced by higher concentrations of ABA (for example 8 μM), it was necessary to apply a cytokinin (K, BAP, Z or 2iP) and a gibberellin (GA4 or GA3) simultaneously, or a cytokinin following a red light treatment. Experiments conducted in darkness in which ABA (8 μM) was applied together with a cytokinin (BAP) and a gibberellin (GA4) showed that the gibberellin and the cytokinin played similar roles towards each other and towards ABA.  相似文献   

5.
Summary CCC at concentrations of 10-3 M and higher inhibits chlorophyll synthesis and 3H-leucine incorporation into a protein fraction by barley leaf sections. Neither of these effects is reversed by exogenous GA3. No effect of CCC was observed on oxygen uptake by the leaf sections. The results indicate that high concentrations of CCC may act through an inhibition of protein synthesis, rather than through a direct effect on endogenous gibberellin production.  相似文献   

6.
In short-term (1 h) uptake experiments GA3(10-5M) stimulated Pi uptake into maize root cortex cells by 28.7 %, Ethrel (10-3M) inhibited it by 18.5 % and BA, IAA, and ABA were inactive. In long-term (5 h) experiments ABA remained inactive, GA3 lost its stimulatory effect, and BA (5. 10-6M), IAA (10-4 -10-5M), and Ethrel (10-3 -5. 10-4M) decreased Pi uptake. When the hormones were present only during 3 h preincubation (“augmentation”) period ABA was inactive, GA3 slightly raised and BA, IAA, and Ethrel slowed down subsequent Pi uptake. BA(10-7 –10-5M) decreased xylem sap volume flow and Pi translocation. ABA in all tested concentrations (10-8 –10-5M) reduced exudation rate and Pi translocation, its effect declining with time. IAA effect strongly depended on concentration used and on application time and varied from strong inhibition to moderate stimulation of both volume flow and Pi translocation. GA3 (10-7M) slightly stimulated xylem volume flow but inhibited phosphate translocation. Ethrel (10-4 and 10-5M) increased both parameters, but Pi transloeation much more than volume flow. IAA, BA, and ABA influenced volume flow and P transloeation to the same extent leaving Pi concentration in the xylem sap unchanged. GA3 and Ethrel influence Pi concentration in the xylem sap and it is thus probable that these hormones regulate release of phosphate ions into the xylem sap.  相似文献   

7.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

8.
Moore TC 《Plant physiology》1967,42(5):677-684
The capacities of indole-3-acetic acid (IAA) and gibberellin A3 (GA3) to counteract the inhibitory effects of (2-chloroethyl) trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (Amo-1618), and N,N-dimethylaminosuccinamic acid (B-995) on hypocotyl elongation in light-grown cucumber (Cucumis sativus L.) seedlings were investigated. One μg of GA3 applied to the shoot tip was sufficient to completely nullify the effect of 10 μg of Amo-1618 or 25 μg of B-995 applied simultaneously to the shoot tip, and 10 μg of GA3 completely counteracted the effect of 10−3 m CCC added to the root medium. One μg of IAA counteracted the effect of 10−3 m CCC in the root medium, but IAA did not nullify the action of either Amo-1618 or B-995. Experiments were conducted using 2 growth retardants simultaneously, which indicated that Amo-1618 and CCC inhibit a common process, namely GA biosynthesis, essential to hypocotyl elongation. However, since the effect of CCC was overcome by applications of both GA and IAA, growth retardation resulting from treatment with CCC apparently is not due solely to inhibition of GA biosynthesis. B-995 did not interact additively with either Amo-1618 or CCC, which suggests that B-995 affects a process different from those affected by the other 2 retardants. Thus, while inhibition evoked by B-995 is reversible by applied GA, the action of B-995 does not appear to be inhibition of GA biosynthesis.  相似文献   

9.
Keith  B.  Srivastava  L. M. 《Planta》1978,139(3):301-303
Gibberellic-acid (GA3)-induced hypocotyl elongation of intact lettuce (Lactuca sativa L.) seedlings was inhibited by colchicine (4×10-4 M) but not by lumicolchicine (4×10-4 M). In excised lettuce hypocotyls, GA3 (10-5 M) increased respiration over water controls, while both colchicine and lumicolchicine alone, or in combination with GA3, reduced respiration. Microtubules were present in the hypocotyls of lumicolchicine-treated seedlings but absent in those treated with colchicine. It is suggested that lumicolchicine is a useful drug to discriminate between the metabolic and microtubule-mediated processes in cell morphogenesis.  相似文献   

10.
Hayat  S.  Ahmad  A.  Mobin  M.  Fariduddin  Q.  Azam  Z.M. 《Photosynthetica》2001,39(1):111-114
The leaves of 30-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10–6 M aqueous solutions of indole-3-yl-acetic acid (IAA), gibberellic acid (GA3), kinetin (KIN), and abscisic acid (ABA) or 10–8 M of 28-homobrassinolide (HBR). All the phytohormones, except ABA, improved the vegetative growth and seed yield at harvest, compared with those sprayed with deionised water (control). HBR was most prominent in its effect, generating 32, 30, 36, 70, 25, and 29 % higher values for dry mass, chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) activity, and net photosynthetic rate in 60-d-old plants, pods per plant, and seed yield at harvest, over the control, respectively. The order of response to various hormones was HBR > GA3 > IAA > KIN > control > ABA.  相似文献   

11.
Experiments were performed to monitor (1) uptake and translocation of foliar-applied microdroplets of14C hormones and (2) effects of multiple growth regulator sprays on foliar and fruit growth variables and photosynthate partitioning in Valencia orange trees (Citrus sinensis (L.) Osbeck). The uptake of14C-sucrose,14C-paclobutrazol (PP333), and14C-napthaleneacetic acid (NAA) in 6-month-old greenhouse-grown trees exceeded that of14C-abscisic acid (ABA) and14C-benzyladenine (BA) 48 h after microdroplet application.14C-sucrose transport from the application site was much greater than any other source, especially14C-BA. In a second study, 2-year-old Valencia orange trees were maintained under field conditions and were sprayed to foliar runoff (3 × /week for 3 weeks) with BA, NAA, ABA, PP333, and gibberellic acid (GA3) at 100 M during flowering and early fruit set. Select branches were then briefly exposed to14CO2 and harvested 24 h later. Both GA3 and BA sprays promoted foliar growth. BA also stimulated fruit growth, whereas GA3 sharply increased fruit dry weight while fruit number decreased. BA and GA3 enhanced14C assimilate export by the foliage to the developing fruit, and GA3 was especially active in promoting fruit sink intensity (14C/dry wt). The other compounds (NAA, ABA, PP333) restricted foliar and fruit growth. They also inhibited transport of14C assimilate from the leaves to the fruit. Results indicate that foliar-applied growth regulators can influence source-sink relations in citrus early in reproductive development by manipulating photoassimilate production and partitioning.  相似文献   

12.
A significant depression of callus growth resulted from low concentrations of abscisic acid (ABA) added to the medium recommended by Linsmaier and Skoog. Low concentrations also decreased the chlorogenic acid and lignin content of the callus, and generally decreased amounts of scopolin and scopoletin in the tissue. Gibberellic acid (GA3) stimulated callus growth in a low concentration (0.1 mg/1) and inhibited growth at a high concentration (10.0 mg/1). Both levels of GA3 increased scopoletin accumulation in tobacco callus. A high concentration of GA3 increased the accumulation of scopolin and chlorogenic acids, whereas a low concentration decreased the amounts of these two phenolic compounds. In comparison with the control, lignin synthesis was stimulated by a low GA3 concentration, but a high GA3 concentration did not have a significant effect. Both low and high concentrations of GA3 overcame ABA inhibition of growth and lignin synthesis, and partially reversed ABA inhibition of scopoletin production. However, GA3 did not reverse the inhibitory effect of ABA on scopolin production. The low concentration of GA3 overcame the inhibition of chlorogenic acid production resulting from a 0.01 mg/1 concentration of ABA, but this was the only reversal of chlorogenic acid inhibition resulting from addition of GA3 to the medium.  相似文献   

13.
The effects of abscisic acid (ABA) and methyl jasmonate (MJ) on growth of rice seedlings were compared. The lowest tested concentration of ABA and MJ that inhibited seedling growth was found to be 4.5 and 0.9 µM, respectively. Growth inhibition by ABA is reversible, whereas that by MJ is irreversible. GA3 was found to be more effective in reversing inhibition of shoot growth by ABA than by MJ. KCl partially relieved MJ-inhibited, but not ABA-inhibited, growth of rice seedlings. The beneficial effect of K+ on growth of rice seedlings in MJ medium could not be replaced by Li+, Na+ or Cs+. MJ treatment caused a marked release of K+ into the medium. In order to understand whether cell wall-bound peroxidase activity was inversely related to rice seedling growth, effects of ABA and MJ on cell wall-bound peroxidase activity were also examined. Results indicated that both ABA and MJ increased cell wall-bound peroxidase activity in roots and shoots of rice seedlings. Although MJ (4.5 µM) was less effective in inhibiting root growth than ABA (9 µM), MJ was found to increase more cell wall-bound peroxidase activity in roots than ABA.  相似文献   

14.
Six-day-old rice plants (Oryza sativa L., cv Bahia) were grown for 5 days more in nutrient solution culture containing 10–5 M abscisic acid (ABA) or gibberellic acid (GA3) (treated plants). Plasma membrane (PM) vesicles were isolated from the shoots of treated or control plants, and ATPase hydrolytic and proton-pumping activity, fluidity, and free sterol and phospholipid composition were determined. Both treatments resulted in modified plant growth and increases in PM fluidity. The ATPase hydrolytic activity was decreased by 25% of control values with ABA treatment and by 35% with GA3. Both treatments reduced proton-pumping by 23%. GA3 treatment reduced the relative amount (%) of stigmasterol in the PM from 38–34%, and increased 5-avenasterol from 4–7%. ABA and GA3 did affect the percentage composition of the fatty acyl chains of phosphatidylinositol (PI). GA3 treatment also resulted in a reduction of the total amount of PI from 73–37 mg mg–1 protein, as well as a decrease in the overall PM C16/C18 ratio and an increase in the degree of unsaturation. Our results show that there is no common link between a specific change in lipid composition and fluidity in these membranes. On the other hand, the reduction in Mg2+-ATPase activity found with both hormones suggests that there is no relationship between membrane-bound enzyme activity and membrane fluidity.  相似文献   

15.
Abscisic acid (ABA) and gibberellins (GAs) are two major phytohormones that regulate seed germination in response to internal and external factors. In this study we used HPLC-ESI/MS/MS to investigate hormone profiles in canola (Brassica napus) seeds that were 25, 50, and 75% germinated and their ungerminated counterparts imbibed at 8°C in either water, 25 μM GA4+7, a 80 mM saline solution, or 50 μM ABA, respectively. During germination, ABA levels declined while GA4 levels increased. Higher ABA levels appeared in ungerminated seeds compared to germinated seeds. GA4 levels were lower in seeds imbibed in the saline solution compared to seeds imbibed in water. Ungerminated seeds imbibed in ABA had lower GA4 levels compared to ungerminated seeds imbibed in water; however, the levels of GA4 were similar for germinated seeds imbibed in either water or ABA. The ABA metabolites PA and DPA increased in seeds imbibed in either water, the saline solution, or ABA, but decreased in GA4+7-imbibed seeds. In addition, ABA inhibited GA4 accumulation, whereas GA had no effect on ABA accumulation but altered the ABA catabolism pathway. Information from our studies strongly supports the concept that the balance of ABA and GA is a major factor controlling germination.  相似文献   

16.
Gibberellic acid, applied to delaminated petioles of rootedcuttings of juvenile and adult ivy initially induced internodeelongation and abnormal leaf development, and suppressed apicaldominance. Juvenile cuttings were affected only transientlyand soon reverted to normal growth. Adult cuttings, insteadof resuming normal growth after this initial response to GA3,gradually developed many juvenile characteristics. Approximately16 weeks after treatment at 25 ?C nearly all shoots of adultcuttings had undergone complete rejuvenation. Lower temperaturereduced the speed of response to GA3. A mixture of gibberellinsA4 and A7 had effects similar to those of GA3 on the growthof juvenile and adult cuttings. Treatment of both phases ofivy with abscisic acid (ABA) induced no visible effects andwhen ABA was applied with GA3 it did not reduce the responseof either phase to the gibberellin. CCC had a marked dwarfingeffect on juvenile ivy but did not induce pre-maturation. However,extraction of gibberellin-like substances from severely dwarfedplants suggested that CCC was not exerting its growth retardingeffect through an inhibition of gibberellin biosynthesis. AMO1618 did not retard growth of juvenile ivy cuttings.  相似文献   

17.
The elongation growth of the Avena first internode segments was studied in the presence of one or several of the following growth substances: indoleacetic acid (IAA), 6-fur-furylamino purine (FAP, kinetin), 6-benzylamino purine (BAP), gibberellin A3 (GA3) and A4+7 (GA4+7), and abscisic acid (ABA). The cytokinins at concentrations of 10?7 to 10?6M stimulated growth with 4 to 6 per cent but this effect was not statistically significant. Concentrations higher than 5 × 10?6M inhibited growth. FAP and BAP (from 10?8M to 10?6M) had no significant interaction with any other growth substance used. The two-factor interactions of IAA × ABA, IAA × GA3, and GA3× ABA, as well as the three-factor interaction IAA × ABA × GA3 were significant. However, the IAA × ABA interaction was significant only when high concentration (10?6M) of ABA was used. The growth inhibition produced by 10?7 and 10?6M ABA was overcome by about equimolar concentrations of IAA. The stimulation of growth by GA3 and GA4+7 (10?9 to 10?7M) was prevented by simultaneous application of ABA, and it was reduced significantly by application of IAA (10?7 to 10?8M). GA3 at 10?8M combined with different concentrations of IAA gave slightly higher elongation than IAA alone but the observed values were significantly lower than expected assuming independent additive action.  相似文献   

18.
Gibberellic acid (GA3) promotes and continuous gold light inhibits germination of seeds of a dwarf strain (WB-2) of watermelon [Citrullus lanatus (Thunb.) Matsu. and Nakai]. Osmotic inhibition of germination with mannitol in light-grown seeds of WB-2 was only slightly reversed by GA3 at the concentrations used, whereas, GA3 substantially relieved osmotic inhibition in dark-grown seeds.

The effects of GA3 and gold light on development of catalase and invertase activities and on levels of free amino acids in germinating seeds of WB-2 were examined. Light depressed development of catalase and invertase activity. Levels of free amino acids increased more slowly in embryonic axes of light- than dark-incubated seeds, but in cotyledons higher levels of amino acids were maintained in light-grown seeds. GA3 accelerated the development of catalase activity in whole embryos and invertase activity in embryonic axes, but did not significantly affect invertase activity in cotyledons during germination. GA3 had little effect on amino acid pools in cotyledons and embryonic axes.

  相似文献   

19.
The purpose of this study was to analyze the nature of the interaction between gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of growth in excised Avena (oat) stem segments. Growth, compared to sucrose controls, was inhibited by ABA in the range of 10?4 to 10?6M. GA3-promoted growth was also inhibited by ABA in the same concentration range. A Lineweaver-Burk analysis of the interaction between GA3 and ABA indicated that ABA acts in a non-competitive fashion with GA3. This same result was obtained previously with GA3-indoleacetic acid (IAA) and GA3-kinetin interactions with Avena stem sections. Our results indicate that ABA can inhibit GA3-promoted growth within physiological concentrations, and that it is probably acting at a different physiological site from that for GA3.  相似文献   

20.
Sorghum bicolor genotypes, near isogenic with different alleles at the third maturity locus, were compared for development, for responsiveness to GA3 and a GA synthesis inhibitor, and occurrence and concentrations of endogenous GAs, IAA, and ABA. At 14 days the genotype 58M (ma3Rma3R) exhibited 2.5-fold greater culm height, 1.75-fold greater total height, and 1.38-fold greater dry weight than 90M (ma3ma3) or 100M (Ma3Ma3). All three genotypes exhibited similar shoot elongation in response to GA3, and 58M showed GA3-mediated hastening of floral initiation when harvested at day 18 or 21. Both 90M and 100M had exhibited hastening of floral initiation by GA3 previously, at later application dates. Tetcyclacis reduced height, promoted tillering, and delayed flowering of 58M resulting in plants which were near phenocopies of 90M and 100M. Based on bioassay activity, HPLC retention times, cochromatography with 2H2-labeled standards on capillary column GC and matching mass spectrometer fragmentation patterns (ions [m/z] and relative abundances), GA1, GA19, GA20, GA53, and GA3 were identified in extracts of all three genotypes. In addition, based on published Kovats retention index values and correspondence in ion masses and relative abundances, GA44 and GA17 were detected. Quantitation was based on recovery of coinjected, 2H2-labeled standards. In 14 day-old-plants, total GA-like bioactivity and GA1 concentrations (nanograms GA/gram dry weight) were two- to six-fold higher in 58M than 90M and 100M in leaf blades, apex samples, and whole plants while concentrations in culms were similar. Similar trends occurred if data were expressed on a per plant basis. GA1 concentrations for whole plants were about two-fold higher in 58M than 90M and 100M from day 7 to day 14. Concentrations of ABA and IAA did not vary between the genotypes. The results indicate the mutant allele ma3R causes a two- to six-fold increase in GA1 concentrations, does not result in a GA-receptor or transduction mutation and is associated with phenotypic characteristics that can be enhanced by GA3 and reduced by GA synthesis inhibitor. These observations support the hypothesis that the allele ma3R causes an overproduction of GAs which results in altered leaf morphology, reduced tillering, earlier flowering, and other phenotypic differences between 58M and 90M or 100M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号