首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative orientation of the pigments of reaction centers from Rhodopseudomonas sphaeroides has been studied by the photoselection technique.A high value (+0.45) of p = (ΔAV ? ΔAH)(ΔAV + ΔAH) is obtained when exciting and observing within the 870 nm band which is contradictory to the results of Mar and Gingras (Mar, T. and Gingras, G. (1976) Biochim. Biophys. Acta 440, 609–621) and Shuvalov et al. (Shuvalov, V.A., Asadov, A.A. and Krakhmaleva, I.N. (1977) FEBS Lett. 76, 240–245). It is shown that the low values of p obtained by both groups were erroneous due to excitation conditions.Analysis of the polarization of light-induced changes when exciting with polarized light in single transitions (spheroiden band and bacteriopheophytin Qx bands) enable us to propose a possible arrangement of the pigments within the reaction center. It is concluded that the 870 nm band corresponds to a single transition and is one of the two bands of the primary electron donor (P-870). The second band of the bacteriochlorophyll dimer is centred at 805 nm. The Qy transitions of the molecules constituting the bacteriochlorophyll dimer are nearly parallel (angle less than 25°).The two bacteriopheophytin molecules present slightly different absorption spectra in the near infra-red. Both bacteriopheophytin absorption bands are subject to a small shift under illumination. The angle between the Qy bacteriopheophytin transitions is 55° or 125°. Both Qy transitions are nearly perpendicular to the 870 nm absorption band. Finally, the carotenoid molecules makes an angle greater than 70° with the 870 nm band and the other bacteriochlorophyll molecules.  相似文献   

2.
Methods of preparing dried gelatin films containing purified reaction centers of Rhodopseudomonas sphaeroides are described. The spectral properties of reaction centers in solution are essentially maintained in dried gelatin films. These films are uniform and have excellent optical properties, showing little particulate scattering at temperatures down to about 4K. Film contraction on cooling to 90K is less than 1% in linear dimension. Linear dichroism spectra are reported for films at room and low temperature. Reaction centers show a moderate amount of linear dichroism in unstretched gelatin films; the magnitude of the linear dichroism becomes much greater when the films are stretched. In stretched films, linear dichroic ratios (AA; absorbance measured with electric vector parallel and perpendicular to stretching direction) between 1.7 and 2.2 were obtained for the 860 nm absorption band of the bacteriochlorophyll component that undergoes primary photooxidation. The relative polarizations of light-induced absorption changes of reaction centers in stretched films are similar to those reported by Vermeglio and Clayton ((1976) Biochim. Biophys. Acta 449, 500–515) and support their hypothesis that absorbance decreases, maximal near 860 and 810 nm, and an increase near 790 nm are associated with the respective disappearance and appearance of discrete bands characteristic of the reduced and oxidized bacteriochlorophyll dimer. This interpretation is also supported by the polarization of the absolute absorption spectrum near 810 and 860 nm. An absorption band near 540 nm, ascribed to the Qx transitions of two molecules of bacteriopheophytin in the reaction center, is split at low temperatures into two bands having similar polarizations. This splitting is probably not due to exciton coupling of the two molecules, since excition theory predicts different polarizations.  相似文献   

3.
The low temperature optical spectra in the region of the Q00 (α-band) and Q01 (β-band) transitions of model heme complexes for b- and c-type cytochromes were measured and the results discussed in terms of the similarities and differences to the spectra of horse heart cytochrome c and other hemeproteins. Comparisons of the resolved vibronic components of the Q01 and β′ bands were made to the recent resonance Raman spectra of hemeproteins. Tentative assignment of the β′ band to Q02 type transitions has been proposed.  相似文献   

4.
W. Junge  H. Schaffernicht  N. Nelson 《BBA》1977,462(1):73-85
The mutual orientation of pigments in Photosystem I reaction centers from spinach is evaluated by polarized photochemistry. The photoinduced linear dichroism of the absorption changes of chlorophyll a1 at 701 nm is studied as function of the excitation wavelength. The Photosystem I reaction center particles contain about 100 and if depleted about 40 chlorophylls, respectively. To prevent their rapid Brownian rotation they were immobilized on DEAE-Sephadex.The excitation spectrum of the linear dichroism reveals a high degree of order between the long axis of β-carotene and the Qy transition moments of those chlorophyll a molecules absorbing at the red end of the spectrum. The latter are the most endangered ones for destructive oxidation via their triplet state. Hence, the location of β-carotene in close proximity to and in parallel with these chlorophylls seems to be most favourable for the protective role of β-carotene within the antennae system I. It is observed that the dichroic ratio of the absorption changes of chlorophyll a1 does not exceed a figure of 43, which characterizes a circularly degenerate system, even at far red excitation (724 nm). This will hit selectively those few chlorophyll a molecules with their peak absorption at about 700 nm (including the photooxidizable dimer). We conclude, if the dimer is the only species peaking at 700 nm then the two chlorophyll a within the dimer have their y-axes oriented perpendicular to each other. If there are some antennae in addition to the dimer, the y-axes of all chlorophyll-a peaking at 700 nm form a star which accounts for the circular degeneracy of absorption.  相似文献   

5.
《BBA》1985,810(2):235-245
Linear dichroism (LD) and absorption (A) spectra of reaction centers from Rhodopseudomonas viridis included in the native chromatophores or reconstituted in planar aggregates have been recorded at 10 K. The samples were oriented in squeezed polyacrylamide gels and the primary donor P was in the reduced or (chemically) oxidized state. The LD spectra of reaction centers in these two states are in favor of a dimeric model of P in which excitonic coupling between the two non-parallel QY transitions leads to a main transition at 990 nm (parallel to the membrane plane) and another one of smaller oscillator strength at 850 nm (tilted at approx. 60° out of the membrane plane). These assignments are in close agreement with the ones proposed in a previous LD study at room temperature (Paillotin, G., Verméglio, A. and Breton, J. (1979) Biochim. Biophys. Acta 545, 249–264). The main QX excitonic component of P has a broad absorption peaking at 620 nm and it corresponds to dipoles exhibiting the same orientation as those responsible for the 850 nm transition. On the basis of the present LD study and of CD data of chemically oxidized-minus-reduced reaction centers, we proposed that the minor QX excitonic component of P is oriented close to the membrane plane and absorbs around 660 nm. The two monomeric bacteriochlorophylls exhibit a positive LD for both their QY transitions (unresolved at 834 nm) and their QX transitions (resolved at 600 and 607 nm), indicating that the planes of these molecules are only slightly tilted out of the membrane plane. The two bacteriopheophytins exhibit strong negative LD with identical LD/A values for their QY transitions (resolved at 790 and 805 nm) and small positive LD for their QX transitions (resolved at 534 and 544 nm), demonstrating that these two molecules are strongly tilted out of the membrane plane with each of the QY transitions tilted at approx. 50° out of that plane. A comparison of these LD data with the structural model derived from X-ray crystallography (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) clearly suggests that a good agreement exists between the results of the two techniques under the following conditions: (i) the C-2 symmetry axis of the reaction center runs along the membrane normal; (ii) excitonic coupling is present only in the primary donor special pair; and (iii) the direction of the optical transitions of the monomeric bacteriochlorophylls and of the bacteriopheophytins is not significantly perturbed by the interactions among the pigments. In addition, a carotenoid is detected in the isolated reaction center with an orientation rather perpendicular to the C-2 symmetry axis. Finally, a comparison of these data with similar ones obtained on the bacteriochlorophyll a-containing reaction center of Rhodopseudomonas sphaeroides 241 points towards a geometrical arrangement of the chromophores which is indistinguishable from the one observed in the reaction center of Rps. viridis.  相似文献   

6.
The structural and functional organization of the spinach chloroplast photosystems (PS) I, IIα and IIβ was investigated. Sensitive absorbance difference spectrophotometry in the ultraviolet (?A320) and red (?A700) regions of the spectrum provided information on the relative concentration of PS II and PS I reaction centers. The kinetic analysis of PS II and PS I photochemistry under continuous weak excitation provided information on the number (N) of chlorophyll (Chl) molecules transferring excitation energy to PS IIα, PS IIβ and PS I. Spinach chloroplasts contained almost twice as many PS II reaction centers compared to PS I reaction centers. The number Nα of chlorophyll (Chl) molecules associated with PS IIα was 234, while Nβ = 100 and NPS I = 210. Thus, the functional photosynthetic unit size of PS II reaction centers was different from that of PS I reaction centers. The relative electron-transport capacity of PS II was significantly greater than that of PS I. Hence, under light-limiting green excitation when both Chl a and Chl b molecules are excited equally, the limiting factor in the overall electron-transfer reaction was the turnover of PS I. The Chl composition of PS I, PS IIα and PS IIβ was analyzed on the basis of a core Chl a reaction center complex component and a Chl ab-LHC component. There is a dissimilar Chl ab-LHC composition in the three photosystems with 77% of total Chl b associated with PS IIα only. The results indicate that PS IIα, located in the membrane of the grana partition region, is poised to receive excitation from a wider spectral window than PS IIβ and PS I.  相似文献   

7.
8.
In the presence of acetone and an excess of exogenous plant pheophytins, bacterio-pheophytins in the reaction centers from Rhodobacter sphaeroides RS601 were replaced by pheophytins at sites HA and HB, when incubated at 43.5℃ for more than 15 min. The substitution of bacteriopheophytins in the reaction centers was 50% and 71% with incubation of 15 and 60 min, respectively. In the absorption spectra of pheophytin-replaced reaction centers (Phe RCs), bands assigned to the transition moments Qx (537 nm) and QY (758 nm) of bacteriopheophytin disappeared, and three distinct bands assigned to the transition moments Qx (509/542 nm) and QY (674 nm) of pheophytin appeared instead. Compared to that of the control reaction centers, the photochemical activities of Phe RCs are 78% and 71% of control, with the incubation time of 15 and 60 min. Differences might exist between the redox properties of Phe RC and of native reaction centers, but the substitution is significant, and the new system is available for further  相似文献   

9.
The thymine derived quasimetacyclophane exist in two conformers a and b. The absorption spectra of a and b were evaluated and the conformational equilibrium in different solvents /H2O : EtOH/ were examined. The rate constant k?1 for reaction ba was established as well as Ea.  相似文献   

10.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):452-459
Redox titrations of the flash-induced formation of C550 (a linear indicator of Q?) were performed between pH 5.9 and 8.3 in Chlamydomonas Photosystem II particles lacking the secondary electron acceptor, B. One-third of the reaction centers show a pH-dependent midpoint potential (Em,7.5) = ? 30 mV) for redox couple QQ?, which varies by ?60 mV/pH unit. Two-thirds of the centers show a pH-independent midpoint potential (Emm = + 10 mV) for this couple. The elevated pH-independent Em suggests that in the latter centers the environment of Q has been modified such as to stabilize the semiquinone anion, Q?. The midpoint potentials of the centers having a pH-dependent Em are within 20 mV of those observed in chloroplasts having a secondary electron acceptor. It appears therefore that the secondary electron acceptor exerts little influence on the Em of QQ?. An EPR signal at g 1.82 has recently been attributed to a semiquinone-iron complex which comprises Q?. The similar redox behavior reported here for C550 and reported by others (Evans, M.C.W., Nugent, J.H.A., Tilling, L.A. and Atkinson, Y.E. (1982) FEBS Lett. 145, 176–178) for the g 1.82 signal in similar Photosystem II particles confirm the assignment of this EPR signal to Q?. At below ?200 mV, illumination of the Photosystem II particles produces an accumulation of reduced pheophytin (Ph?). At ?420 mV Ph? appears with a quantum yield of 0.006–0.01 which in this material implies a lifetime of 30–100 ns for the radical pair P-680+Ph?.  相似文献   

11.
An oxygen-evolving Photosystem (PS) II preparation was isolated after Triton X-100 treatment of spinach thylakoids in the presence of Mg2+. The structural and functional components of this preparation have been identified by SDS-polyacrylamide gel electrophoresis and sensitive spectrophotometric analysis. The main findings were: (1) The concentration of the primary acceptor Q of PS II was 1 per 230 chlorophyll molecules. (2) There are 6 to 7 plastoquinone molecules associated with a ‘quinone-pool’ reducible by Q. (3) The only cytochrome present in significant amounts (cytochrome b-559) occurred at a concentration of 1 per 125 chlorophyll molecules. (4) The only kind of photochemical reaction center complex present was identified by fluorescence induction kinetic analysis as PS IIα. (5) An Em = ? 10 mV has been measured at pH 7.8 for the primary electron acceptor Qα of PS IIα. (6) With conventional SDS-polyacrylamide gel electrophoresis, the preparation was resolved into 13 prominent polypeptide bands with relative molecular masses of 63, 55, 51, 48, 37, 33, 28, 27, 25, 22, 15, 13 and 10 kDa. The 28 kDa band was identified as the PS II light-harvesting chlorophyll ab-protein. In the presence of 2 M urea, however, SDS-polyacrylamide gel electrophoresis showed seven prominent polypeptides with molecular masses of 47, 39, 31, 29, 27, 26 and 13 kDa as well as several minor components. CP I under identical conditions had a molecular mass of 60–63 kDa.  相似文献   

12.
Beverley R. Green  Edith L. Camm 《BBA》1982,681(2):256-262
Reelectrophoresis of the oligomer form (CP II1) of the chlorophyll ab light-harvesting complex (LHC) from the green alga Acetabularia yields two green bands which run at the position typical of the monomer (CP II). The upper green band (CP II1) is enriched in the 27 kDa polypeptide of the LHC, while the lower is enriched in the 26 kDa polypeptide. The fact that both bands have both chlorophyll (Chl) a and b, and in the same ratio, implies that the LHC is made up of two Chl ab proteins. Neither of these bands can be attributed to the Chl ab complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432). Resolution of CP II1 and CP II2 of spinach can be obtained if sucrose gradient fractions of an octylglucoside extract are subjected to SDS-polyacrylamide gel electrophoresis. CP II1 and CP II2 are interpreted as being fundamental subunits of the light-harvesting complex as it is defined on SDS-polyacrylamide gels.  相似文献   

13.
Low-temperature absorption, circular dichroism and resonance Raman spectra of the LM units isolated with sodium dodecyl sulfate from wild-type Rhodopseudomonas sphaeroides reaction centers (Agalidis, I. and Reiss-Husson, F. (1983) Biochim. Biophys. Acta 724, 340–351) are described in comparison with those of intact reaction centers. In LM unit, the Qy absorption band of P-870 at 77 K shifted from 890 nm (in reaction center) to 870 nm and was broadened by about 30%. In contrast, the 800 nm bacteriochlorophyll absorption band including the 810 species remained unmodified. It was concluded that the 810 nm transition is not the higher excitonic component of P-870. The Qx band of P-870 shifted from 602 nm (in reaction center) to 598 nm in LM, whereas the Qx band of the other bacteriochlorophylls was the same in reaction center and LM and had two components at about 605 and 598 nm. The QxII band of bacteriopheophytin was upshifted to 538 nm and a slight blue shift of the Qy band of bacteriopheophytin was observed. Resonance Raman spectra of spheroidene in LM showed that its native cis-conformation was preserved. Resonance Raman spectroscopy also demonstrated that in LM the molecular interactions assumed by the conjugated carbonyls of bacteriochlorophyll molecules were altered, but not those assumed by the bacteriopheophytins carbonyls. In particular at least one Keto group of bacteriochlorophyll free in reaction center, becomes intermolecularly bounded in LM (possibly with extraneous water). This group may belong to the primary donor molecules.  相似文献   

14.
Following picosecond light activation, the bacteriochlorophyll and bacteriopheophytin complement of Rps.sphaeroides reaction centers depleted of ubiquinone behaves as though it has no primary electron acceptor; the excited intermediary BChlBPh2 state formed in <10 ps lasts >1 ns. Addition of ubiquinone-10 reconstitutes the very rapid electron transfer rates from the excited intermediary BChBPh state to ubiquinone; the kinetics and rate are similar to that encountered in the untreated reaction centers. Interpretation of the data presented suggests that ubiquinone is the immediate electron acceptor from BPh?. This is consistent with the model for the primary reactions leading to [(BChl)2?BPh]Q?.  相似文献   

15.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7′,8′-tetrahydro-ψ,ψ-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1,2,7′,8′-tetrahydro-ψ,ψ-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

16.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

17.
Reaction centers have been purified from chromatophores of Rhodopseudomonas viridis by treatment with lauryl dimethyl amine oxide followed by hydroxyapatite chromatography and precipitation with ammonium sulfate. The absorption spectrum at low temperature shows bands at 531 and 543 nm, assigned to two molecules of bacteriopheophytin b. The 600 nm band of bacteriochlorophyll b is resolved at low temperature into components at 601 and 606.5 nm. At room temperature the light-induced difference spectrum shows a negative band centered at 615 nm, where the absorption spectrum shows only a weak shoulder adjacent to the 600 nm band. The fluorescence spectrum shows a band at 1000 nm and no fluorescence corresponding to the 830 nm absorption band. Two molecules of cytochrome 558 and three of cytochrome 552 accompany each reaction center. The differential extinction coefficient (reduced minus oxidized) of cytochrome 558 at 558 nm was estimated as 20 ± 2 mM?1 · cm?1 through a coupled reaction with equine cytochrome c. The extinction coefficient of reaction centers at 960 nm was determined to be 123 ± 25 mM?1 · cm?1 by measuring the light-induced bleaching of P-960 and the coupled oxidation of cytochrome 558. The corresponding extinction coefficient at 830 nm is 300 ± 65 mM?1 · cm?1. The absorbance ratio a280nma830nm in our preparations was 2.1, and there was 190 kg protein per mol of reaction centers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed three major components of apparent molecular weights 31 000, 37 000 and 41 000.  相似文献   

18.
Using thoroughly dark-adapted thylakoids and an unmodulated Joliot-type oxygen electrode, the following results were obtained. (i) At high flash frequency (4 Hz), the oxygen yield at the fourth flash (Y4) is lower compared to Y3 than at lower flash frequency. At 4 Hz, the calculated S0 concentration after thorough dark adaptation is found to approach zero, whereas at 0.5 Hz the apparent S0(S0 + S1) ratio increases to about 0.2. This is explained by a relatively fast donation (t12 = 1.0–1.5 s) of one electron by an electron donor to S2 and S3 in 15–25% of the Photosystem II reaction chains. The one-electron donor to S2 and S3 appears to be rereduced very slowly, and may be identical to the component that, after oxidation, gives rise to ESR signal IIs. (ii) The probability for the fast one-electron donation to S2 and S3 has nearly been the same in triazine-resistant and triazine-susceptible thylakoids. However, most of the slow phase of the S2 decay becomes 10-fold faster (t12 = 5–6 s) in the triazine-resistant ones. In a small part of the Photosystem II reaction chains, the S2 decay was extremely slow. The S3 decay in the triazine-resistant thylakoids was not significantly different from that in triazine-susceptible thylakoids. This supports the hypothesis that S2 is reduced mainly by Q?A, whereas S3 is not. (iii) In the absence of CO2/HCO?A and in the presence of formate, the fast one-electron donation to S2 and S3 does not occur. Addition of HCO?3 restores the fast decay of part of S2 and S3 to almost the same extent as in control thylakoids. The slow phase of S2 and S3 decay is not influenced significantly by CO2/HCO?3. The chlorophyll a fluorescence decay kinetics in the presence of DCMU, however, monitoring the Q?A oxidation without interference of QB, were 2.3-fold slower in the absence of CO2/HCO?3 than in its presence. (iv) An almost 3-fold decrease in decay rate of S2 is observed upon lowering the pH from 7.6 to 6.0. The kinetics of chlorophyll a fluorescence decay in the presence of DCMU are slightly accelerated by a pH change from 7.6 to 6.0. This indicates that the equilibrium Q?A concentration after one flash is decreased (by about a factor of 4) upon changing the pH from 7.6 to 6.0. When direct or indirect protonation of Q?B is responsible for this shift of equilibrium Q?A concentration, these data would suggest that the pKa value for Q?B protonation is somewhat higher than 7.6, assuming that the protonated form of Q?B cannot reduce QA.  相似文献   

19.
Ismael Moya  Raphael Garcia 《BBA》1983,722(3):480-491
A new method for decomposing fluorescence emission spectra into their elementary components, based on the simultaneous recording of fluorescence intensity and lifetime vs. the emission wavelength, has been applied to the spectra of algal cells at liquid nitrogen temperature. A model of Gaussian components fits both τ(λ) and F(λ) spectra with the same parameters. The fluorescence lifetimes have been measured by phase fluorimetry at two modulation frequencies: 29 and 139 MHz. The final Gaussian decomposition is able to describe both the 29 and 139 MHz spectra. The following conclusions concerning the fluorescence spectra of Chlorella cells at 77 K can be drawn. These conclusions are also valid with minor changes for the other examined species. (1) An overlapping of different emitting bands occurs in all the spectra; therefore, a direct lifetime reading from phase delay measurement necessitates measurements being made at several frequencies. (2) At the Fmax fluorescence level, the lifetime values of the two emissions usually associated with variable fluorescence are 0.53 ns (for B′1; λ peak 688 nm), and 1.46 ns (for B′2; λ peak 698 nm); these lifetimes are shorter than those we have measured at room temperature (approx. 1.8 ns). (3) Superimposed on B′1 and B′2 and with approximatively the same peak location, two long-lifetime components (B″1, 4.8 ns; B″2, 5.6 ns) are present. Two hypotheses can be proposed to explain these emissions: (i) the long-lifetime components arise from subsets of chlorophyll a disconnected from the functional antenna by the cooling process; and (ii) charge recombination in reaction centers leads to delayed fluorescence. (4) In the λ > 710 nm region, two main bands are required to describe the so-called Photosystem I emission: B3 (0.8 ns; λ peak 715 nm) and B4 (3.3 ns; λ peak 724 nm). The former band, usually unresolved in the amplitude fluorescence spectra, is a specific finding from lifetime measurements and has been associated with the antenna core of Photosystem I. No additional information has been obtained for B4. A supplementary small band (B5, 0.40 ns; λ peak ? 740 nm) is necessary to take into account the frequency effect and the τ(λ) decrease in the λ > 740 nm spectral range.  相似文献   

20.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号