首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the identification of the amino acid residue which forms the covalent intermediate in the catalytic mechanism of bovine intestinal 5'-nucleotide phosphodiesterase and the sequence of the neighboring amino acids. The active site of 5'-nucleotide phosphodiesterase was labeled using thymidine 5'-[alpha-32P]triphosphate as substrate. A single labeled cyanogen bromide peptide was isolated using reversed-phase high performance liquid chromatography. After subdigestion with endoproteinase Lys-C and chymotrypsin, the entire amino acid sequence of the 60-residue active site peptide was obtained using automated Edman degradation. All of the radioactivity of the active site peptide was localized to a hexapeptide with sequence Thr-Phe-Pro-Asn-His-Tyr. Phosphoamino acid analysis of this peptide indicated that the labeled residue was threonine. We are not aware of any other enzymes in which threonine is phosphorylated as a covalent intermediate in the catalytic mechanism.  相似文献   

2.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

3.
Granulocyte/macrophage-colony stimulating factor (GM-CSF) is a regulatory cytokine important in the proliferative and functional activation of hematopoietic cells. It belongs to a family of 20 kDa or less acidic glycoprotein molecules found in a broad range of cellular sources. On the basis of the previously reported nucleotide-binding properties of interleukin-2 (IL-2), atrial natriuretic factor (ANF), and glucagon, the interaction of GM-CSF with nucleotides was investigated. Using radiolabeled 8-azidoadenosine-containing photoprobes of ATP ([gamma-32P]-8N3ATP) and Ap4A, the putative biological alarmone ([beta'-32P]-8N3Ap4A), we have identified a nucleotide binding site on recombinant murine GM-CSF (rmGM-CSF). Specificity of binding was demonstrated by saturation and competition experiments. Saturation of photoinsertion by [gamma-32P]-8N3ATP and [beta'-32P]-8N3Ap4A occurs with apparent Kd's of 10 and 0.7 microM, respectively. Using an immobilized Fe3+ affinity chromatography technique, developed specifically for the isolation of photolabeled peptides, a single radiolabeled peptide was isolated. It was identified as amino acids 5-14 near the N-terminus of GM-CSF. This peptide region has been shown in previous studies to be critical for biological activity. Also consistent with this observation is our finding that the photolabeled GM-CSF has lost most, if not all, of its biological activity, as determined by a cellular proliferation assay.  相似文献   

4.
2-Azidoadenosine was synthesized from 2-chloroadenosine by sequential reaction with hydrazine and nitrous acid and then bisphosphorylated with pyrophosphoryl chloride to form 2-azidoadenosine 3',5'-bisphosphate. The bisphosphate was labeled in the 5'-position using the exchange reaction catalyzed by T4 polynucleotide kinase in the presence of [gamma-32P]ATP. Polynucleotide kinase from a T4 mutant which lacks 3'-phosphatase activity (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) was required to facilitate this reaction. 2-Azidoadenosine 3',5'-[5'-32P]bisphosphate can serve as an efficient donor in the T4 RNA ligase reaction and can replace the 3'-terminal adenosine of yeast tRNAPhe with little effect on the amino acid acceptor activity of the tRNA. In addition, we show that the modified tRNAPhe derivative can be photochemically cross-linked to the Escherichia coli ribosome.  相似文献   

5.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

6.
Bis(monoacylglycero)phosphate (BMP) has the unique stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol] (Brotherus, J., Renkonen, O., Herrmann, J., and Fischer, W. (1974) Chem. Phys. Lipids 13, 178-182) which differs from other known mammalian phospholipids that have the sn-glycero-3-phosphoryl configuration. This stereochemistry may contribute to its physiologic function. Here we describe studies using the macrophage-like cell line RAW 264.7 designed to determined how this unique stereoconfiguration occurs. These studies show that the stereoconfiguration of BMP produced from exogenous phosphatidylglycerol (PG) by RAW 264.7 cells has the expected stereoconfiguration of 3-acyl-sn-glycero-1-phosphoryl-1'-sn-[3'-acylglycerol]. Experiments using diacyl-sn-[2-3H]glycero-3-phosphoryl-sn-1'-[2-3H]glycerol demonstrate that this unique stereoconfiguration is not produced due to an oxidation/reduction mechanism involving the sn-2-glycerol carbon. When dioleoyl-sn-[1-14C]glycero-3-phosphoryl-rac-glycerol was converted to 14C-labeled BMP, the 14C label was found esterified to the phosphate moiety. These results suggest that a stereospecific enzyme is capable of reorienting the radiolabeled glycerol backbone of this PG substrate, effectively changing the stereochemistry of the lipid. We also show that this enzyme is stereoselective with regard to the base glycerol moiety of the substrate PG used. Finally, we propose a new pathway for the synthesis of BMP from PG.  相似文献   

7.
Treatment of the RNA of satellite tobacco necrosis virus (STNV) with phosphomonoesterase followed by heat denaturation and treatment with polynucleotide kinase in the presence of [gamma-32P]ATP yields a STNV [5'-32P]RNA containing a homogeneous 5' terminus. Analyses of this STNV [5'-32P]RNA yield the sequence of the first 42 nucleotides from the 5'terminus of STNV RNA. This nucleotide sequence contains the translation initiation AUG codon starting at position 30 from the 5' terminus as indicated by match of subsequent nucleotides with the genetic code assignments for the N-terminal amino acids of STNV coat protein in the 5'-terminal sequence ppAGUAAAGACAGGAAACUU-UACUGACUAACAUGGCAAAACAAC. An interesting feature of this sequence is its potential to form a hairpin loop structure involving perfect Watson-Crick base pairing between the first seven nucleotides and nucleotides at positions 16--22.  相似文献   

8.
In this paper, we describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D3 3 beta-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D3 3 beta-3'-[N-(4-azido-2-nitro-[3,5-3H]phenyl)amino]propyl ether (3H-25-ANE) (Ray et al., 1986, 1991). We have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D3 for the binding site of the latter in hDBP and (2) 3H-25-ANE is capable of covalently labeling the hDBP molecule when exposed to UV light. Treatment of a sample of purified hDBP, labeled with 3H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was associated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, our results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D3.  相似文献   

9.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

10.
Homogeneous 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD, EC 1.1.1.50) of rat liver cytosol is potently inhibited at its active site by nonsteroidal anti-inflammatory drugs (NSAIDs). Using 3 alpha-bromoacetoxy-5 alpha-androstan-17-one (BrAnd, a substrate analog) and 11 alpha-bromoacetoxyprogesterone (Br11P, a glucocorticoid analog) as affinity-labeling agents, kinetic evidence was obtained that these agents alkylate this site. Inactivation of 3 alpha-HSD with either [14C]BrAnd or [14C] Br11P led to the incorporation of 1 mol of affinity-labeling agent per enzyme monomer. Complete acid hydrolysis of 3 alpha-HSD radiolabeled with either agent followed by amino acid analysis led to the identification of [14C]carboxymethylcysteine indicating that [14C]BrAnd and [14C]Br11P covalently tag discrete reactive cysteine(s) at the enzyme active site. Trypsin digestion of [14C]BrAnd-inactivated 3 alpha-HSD followed by peptide mapping led to the purification of a single radiolabeled peptide (3A1) which gave the following sequence: H2N-Ser-Ile-Gly-Val-Ser-Asn-Phe-Asn-X-Arg-CO2H. Identical experiments on [14C] Br11P-inactivated 3 alpha-HSD led to the purification of three radiolabeled peptides (11P1-11P3). The major radiolabeled peptide (11P1) had an identical sequence to 3A1 which was tagged with [14C]BrAnd. The minor radiolabeled peptides had the following sequences: H2N-Ser-Lys-Asp-Ile-Ile-Leu-Val-Ser-Tyr-X-Thr-Leu-Gly-Ser-Ser-Arg-CO2H (11P2) and H2N-Ser-Pro-Val-Leu-Leu-Asp-Asp-Pro-Val-Leu-X-Ala-Ile-Ala-Lys-CO2H (11P3). In each peptide group X was identified as carboxymethylcysteine. Alignment of the peptide sequences with the primary structure of 3 alpha-HSD, deduced from its cDNA clone, assigned peptide 11P1 to residues 162-171, peptide 11P2 to residues 208-223, and peptide 11P3 to residues 232-246 of the amino acid sequence. The reactive cysteines correspond to Cys170, Cys217, and Cys242. We propose that Cys170 labeled by BrAnd may lie within the catalytic pocket of the enzyme. By contrast the 11 alpha-bromoacetoxy group in Br11P labeled several reactive cysteines which may be involved in the binding of glucocorticoids and NSAIDs.  相似文献   

11.
S S David  B E Haley 《Biochemistry》1999,38(26):8492-8500
Creatine kinase (CK) will autoincorporate radiolabel from [gamma32P]ATP and has thus been reported to be autophosphorylated. Also, in contrast to normal brain enzyme, CK in Alzheimer-diseased brain homogenate shows greatly decreased activity, abolished photolabeling with [32P]8N3ATP, and no detectable autoincorporation of radiolabel by [gamma32P]ATP. Surprisingly, our studies with both human brain and purified CK showed that [alpha32P]ATP, [gamma32P]ATP, [alpha32P]ADP, [2,8H3]ATP, [gamma32P]2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and [gamma32P]benzophenone-gammaATP all autoincorporate radiolabel into CK with good efficiency. This demonstrates that the gamma-phosphate and the 2' and 3' hydroxyls are not involved in the covalent linkage and that all three phosphates, the ribose and base of the ATP molecule are retained upon autoincorporation (nucleotidylation). Treatment with NaIO3 to break the 2'-3' linkage effected total loss of radiolabel indicating that nucleotidylation resulted in opening of the ribose ring at the C1' position. Nucleotidylation with increasing [alpha32P]ATP at 37 degrees C gives an approximate k0.5 of 125 microM and saturates at 340 microM nucleotide. Modification of 8-10% of the copy numbers occurs at saturation, and CK activity is inhibited to approximately the same degree. Low micromolar levels of native substrates such as ADP, ATP, and phosphocreatine substantially reduce [alpha32P]ATP nucleotidylation. In contrast, AMP, GTP, GMP, NADH, and creatine did not effectively reduce nucleotidylation. When [alpha32P]ATP-nucleotidylated or [alpha32P]8N3ATP-photolabeled CK is treated with trypsin a single, identical radiolabeled peptide (V279-R291) is generated that comigrates on reverse phase HPLC and Tris-tricine electrophoresis. Nucleotidylation into this peptide was prevented 86% by the presence of ATP. We conclude that CK is nucleotidylated within the active site by modification at the C1'position and that autophosphorylation of this enzyme does not occur.  相似文献   

12.
A procedure for the assay of free fatty acids which has been adapted for the assay of phospholipase A2 is described. This consists of the conversion of long chain fatty acids to fatty acyl-CoA using the Mg2(+)-dependent fatty acyl-CoA synthetase, [alpha-32P]ATP and coenzyme A. In order to ensure the complete conversion of the acid to its CoA ester pyrophosphatase is also added to the incubation mixture. AM32P formed in stoichiometric amounts is separated from the remaining AT32P by polyethyleneimine-cellulose thin-layer chromatography and the fatty acid content is calculated from the specific radioactivity of AT32P. As little as 1 to 3 nmol of fatty acids hydrolyzed from any phospholipid using nanogram amounts of phospholipase A2 can be estimated with reliability. The real advantage of the method is that it combines the sensitivity of a radiochemical procedure without having to use radiolabeled substrates for the assay of phospholipases.  相似文献   

13.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

14.
[32P]tRNA from baker's yeast is incorporated without degradation into lympholeukotic cells of L1210 mice. The tRNA incorporation determined after tRNA hydrolysis on cell surface by RNAase increases linearly with a rise in the initial concentration from 0.5 to 500 micrograms per ml. According to gel electrophoresis of intracellular nucleic acids, after a 3 hour incubation the [32P]tRNA incorporated into the cells by 50% to form tRNA fragments without any conspicuous reutilization. The kinetic curve of tRNA incorporation during the first 60 min demonstrates a severalfold decrease in the initial maximal incorporation of [32P]tRNA into the cells (2 min), with a subsequent restoration of the incorporation within 2-3 hours.  相似文献   

15.
We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes (McElligott, M. A., Miao, P., and Dice, J. F. (1985) J. Biol. Chem. 260, 11986-11993). We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed [3H]ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected [3H]ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides.  相似文献   

16.
Serological studies have suggested that the DHCBA strain guinea pig expresses an I region which is identical to that of strain 13. However, chemical characterization of Ia.3,5 molecules isolated from these two strains has indicated that these serologically indistinguishable Ia molecules are actually chemically distinct. Ia.3,5 molecules biosynthetically labeled with either [3H]leucine, [3H]arginine, or [3H]lysine were purified by ricin affinity chromatography and isolated by indirect immunoprecipitation with specific alloantisera. Initial examination of the two Ia.3,5 molecules by SDS-PAGE, isoelectric focusing, and two-dimensional gel analyses revealed no strain-specific differences. Furthermore, comparative peptide mapping of the DHCBA and strain 13 radiolabeled Ia.3,5 alpha-chains demonstrated complete peptide homology. In contrast, tryptic peptide maps of amino acid radiolabeled beta-chains revealed two peptides unique to the strain 13 beta-chain and one peptide unique to the DHCBA beta-chain. Analysis of [3H] mannose-labeled beta-chain tryptic peptides verified that the peptide differences observed using 3H-amino acids were not due to variation in N-linked glycosylation. However, strain-specific variability was also noted in the profiles of [3H]mannose-labeled beta-chains. These data indicate that the strain 13 and DHCBA alpha-chains are probably structurally identical, while the beta-chains show strain specific alterations in their chemical structure.  相似文献   

17.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

18.
Both 3'- and 5'-terminal structures of human rotavirus genome double-stranded RNA segments were determined. RNAs were labeled at the 3'-termini with [32P]pCp by incubation with RNA ligase and at the 5'-termini with [32P]phosphate by polynucleotide kinase or, in the case of 5' caps, with 3H by chemical modification with [3H]NaBH4. Examination of radiolabeled termini released by digestion with several base-specific RNases revealed that rotavirus RNA segments are base paired end-to-end and contain the same terminal structures: (formula; see text)  相似文献   

19.
The site of Escherichia coli 16S ribosomal RNA cross-linked to the 5'-anticodon base of A site bound E. coli valyl-tRNA was identified. Cross-linking was via the affinity probe 6-[(2-nitro-4-azidophenyl)amino]caproate (NAK) or 3-[[2-[(2-nitro-4-azidophenyl)amino]ethyl]dithio]propionate (SNAP) attached to the carboxyl group of the 5'-anticodon base 5-(carboxyethoxy)uridine via an ethylenediamine spacer [Gornicki, P., Ciesiolka, J., & Ofengand, J. (1985) Biochemistry (preceding paper in this issue)]. With both probes, RNase T1 digestion of the isolated 16S RNA-tRNA covalent complex, 5'-32P postlabeling, and gel electrophoresis yielded two oligonucleotides larger than any fragments from non-cross-linked tRNA or rRNA. Appearance of the oligomers was dependent on the presence of the probe on the tRNA. Unmodified tRNA in the A and/or P sites did not yield any product. The presence of elongation factor Tu in the incubation mixture was also required. Dithiothreitol (DDT) treatment of the SNAP-induced covalent complex prior to electrophoresis also abolished the oligomers. Only the larger of the two oligomers (present in a 3:1 ratio) was sequenced. The SNAP dimer was cleaved with DTT, and the rRNA and tRNA oligomers were separated and sequenced as monomers. The NAK dimer was sequenced without cleavage by taking advantage of the differences in electrophoretic mobility among sequence and/or composition isomers of the same length. In both cases, the rRNA oligomer was identified as UACACACCG1401, and the nucleotide cross-linked was shown to be the C1400 residue. The expected tRNA modification site was also identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号