首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium and kinetic behavior of the guanidine hydrochloride (Gdn-HCl) induced unfolding/refolding of four bovine pancreatic trypsin inhibitor (BPTI) mutants was examined by using ultraviolet difference spectroscopy. In three of the mutants, we replaced the buried 30-51 disulfide bond with alanine at position 51 and valine (Val30/Ala51), alanine (Ala30/Ala51), or threonine (Thr30/Ala51) at position 30. For the fourth mutant, the solvent-exposed 14-38 disulfide was substituted by a pair of alanines (Ala14/Ala38). All mutants retained the 5-55 disulfide. Experiments were performed under oxidizing conditions; thus, both the unfolded and folded forms retained two native disulfide bonds. Equilibrium experiments demonstrated that all four mutants were destabilized relative to wild-type BPTI. However, the stability of the 30-51 mutants increased with the hydrophobicity of the residue substituted at position 30. Kinetic experiments showed that all four mutants contained two minor slow refolding phases with characteristics of proline isomerization. The specific behavior of the phases depended on the location of the disulfide bonds. The major unfolding/refolding phase for each of the 30-51 mutants was more than an order of magnitude slower than for Ala14/Ala38 or for BPTI in which the 14-38 disulfide bond was specifically reduced and blocked with iodoacetamide [Jullien, M., & Baldwin, R. L. (1981) J. Mol. Biol. 145, 265-280]. Since this effect is independent of the stability of the protein, it is consistent with a model in which the proper docking of the interior residues of the protein is the rate-limiting step in the folding of these mutants.  相似文献   

2.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

3.
An analogue of the BPTI folding intermediate that contains only the disulphide bonds between Cys14 and Cys38 and between Cys30 and Cys51 has been prepared in Escherichia coli by protein engineering methods. The other two Cys residues of native BPTI (at positions 5 and 55) have been replaced by Ser. Essentially complete proton resonance assignments of the analogue were obtained by employing two-dimensional 1H nuclear magnetic resonance techniques. The intermediate has a more extended conformation in the N-terminal (residues 1 to 7) region and there are other differences in the C-terminal (residues 55 to 58) region. The remainder of the protein is substantially identical to native BPTI. The conformational properties of the analogue can explain several aspects of the kinetic role that the normal (14-38, 30-51) intermediate plays in the folding of BPTI.  相似文献   

4.
D P Goldenberg 《Biochemistry》1988,27(7):2481-2489
The kinetics of the disulfide-coupled unfolding-refolding transition of a mutant form of bovine pancreatic trypsin inhibitor (BPTI) lacking Cys-14 and -38 were measured and compared to previous results for the wild-type protein and other modified forms. The altered cysteines, which were changed to serine in the mutant protein, are normally paired in a disulfide in the native protein but from disulfides with Cys-5 in two-disulfide kinetic intermediates during folding. Although the mutant protein could fold efficiently, the kinetics of both folding and unfolding were altered, reflecting the roles of these cysteines in the two-disulfide intermediates with "wrong" disulfides. The intramolecular rate constant for the formation of the second disulfide of the native mutant protein was more than 10(3)-fold lower than that for the formation of a second disulfide during the refolding of the wild-type protein. The observed rate of unfolding of the mutant protein was also lower than that of the wild-type protein, demonstrating that the altered cysteines are involved in the intramolecular rearrangements that are the rate-determining step in the unfolding of the wild-type protein. These results confirm the previous conclusion [Creighton, T.E. (1977) J. Mol. Biol. 113, 275-293] that the energetically preferred pathway for folding and unfolding of BPTI includes intramolecular rearrangements of intermediates in which Cys-14 and -38 are paired in disulfides not present in the native protein. The present results are also consistent with other, less detailed, studies with similar mutants lacking Cys-14 and -38 [Marks, C.B., Naderi, H., Kosen, P.A., Kuntz, I.D., & Anderson, S. (1987) Science (Washington, D.C.) 235, 1370-1371].  相似文献   

5.
Li R  Battiste JL  Woodward C 《Biochemistry》2002,41(7):2246-2253
Folding kinetics of a series of bovine pancreatic trypsin inhibitor (BPTI) variants with similar stabilities and structures have been measured. All are strongly destabilized relative to WT. In Y21A, F22A, Y23A, G37A, and F45A, the three native disulfide bonds are retained. In RM(14-38), Cys14 and Cys38 thiols are methylated while C30-C51 and C5-C55 disulfides remain intact. At pH 2 and 20 degrees C, relaxation rate constants of the major kinetic phase range from approximately 10 ms to 0.71 s in the absence of denaturant. All mutants except G37A exhibit standard two-state behavior. Y21A, F22A, and Y23A fold much more slowly than other mutants. The experiments were designed to test the hypothesis that native-like structure detected in the unfolded BPTI is important in folding. Two native-like contacts are implied by NOEs in reduced and unfolded BPTI, between residues Tyr23 and Ala25, and between Gly37 NH and the Tyr35 ring. The results support an earlier hypothesis that formation of the central beta-hairpin, monitored by a local native interaction between Tyr23 and Ala25, is crucial to initiation of BPTI folding. The second native-like contact is important, not in folding initiation, but in preventing a kinetic trap later in the process. Evidence for this comes from mutant G37A, which behaves very differently from the others in displaying a phenomenon called rollover. G37A is, to our knowledge, the first reported case in which a single-site replacement causes rollover, while the wild type and all other known mutants of the same protein show typical two-state chevron plots. The best explanation is that the G37A mutation introduces a kinetic trap of the type described by Chan and Dill [(1998) Proteins 30, 2-33]. In native BPTI, there is an unusual polar interaction between the ring of Tyr35 and the backbone NH of Gly37. Our results suggest that the NH-aromatic interaction between residues 37 and 35 is important throughout folding in stabilizing native-like loop conformations and in preventing the flexible loops from being trapped in nonfunctional conformations during later stages of folding.  相似文献   

6.
The most productive folding pathway of reduced bovine pancreatic trypsin inhibitor (BPTI) proceeds through the disulphide intermediates (30-51), (30-51, 5-14), and (30-51, 5-38); these are important kinetic intermediates in folding, even though the latter pair contain non-native disulphide bonds. Analogues of these intermediates have been prepared by protein engineering methods and their conformational properties examined by circular dichroism and 1H-nuclear magnetic resonance. The (30-51), (30-51, 5-14) and (30-51, 5-38) analogues exhibit comparable degrees of stable structure, which cannot include those portions of the polypeptide chain involving Cys5, Cys14 and Cys38. These properties are consistent with the roles of (30-51, 5-14) and (30-51, 5-38) in the folding pathway of BPTI, which demand that they exhibit a considerable degree of conformational flexibility in part of the molecule.  相似文献   

7.
Ruoppolo M  Vinci F  Klink TA  Raines RT  Marino G 《Biochemistry》2000,39(39):12033-12042
The eight cysteine residues of ribonuclease A form four disulfide bonds in the native protein. We have analyzed the folding of three double RNase A mutants (C65A/C72A, C58A/C110A, and C26A/C84A, lacking the C65-C72, C58-C110, and C26-C84 disulfide bonds, respectively) and two single mutants (C110A and C26A), in which a single cysteine is replaced with an alanine and the paired cysteine is present in the reduced form. The folding of these mutants was carried out in the presence of oxidized and reduced glutathione, which constitute the main redox agents present within the ER. The use of mass spectrometry in the analysis of the folding processes allowed us (i) to follow the formation of intermediates and thus the pathway of folding of the RNase A mutants, (ii) to quantitate the intermediates that formed, and (iii) to compare the rates of formation of intermediates. By comparison of the folding kinetics of the mutants with that of wild-type RNase A, the contribution of each disulfide bond to the folding process has been evaluated. In particular, we have found that the folding of the C65A/C72A mutant occurs on the same time scale as that of the wild-type protein, thus suggesting that the removal of the C65-C72 disulfide bond has no effect on the kinetics of RNase A folding. Conversely, the C58A/C110A and C26A/C84A mutants fold much more slowly than the wild-type protein. The removal of the C58-C110 and C26-C84 disulfide bonds has a dramatic effect on the kinetics of RNase A folding. Results described in this paper provide specific information about conformational folding events in the regions involving the mutated cysteine residues, thus contributing to a better understanding of the complex mechanism of oxidative folding.  相似文献   

8.
A gene for bovine pancreatic trypsin inhibitor (BPTI) was fused to the coding sequence for the Escherichia coli alkaline phosphatase signal peptide and expressed in E. coli under the control of the alkaline phosphatase promoter. When induced in phosphate-depleted medium such cells produced a trypsin inhibitor that was indistinguishable from native, properly folded BPTI. In particular, the BPTI produced by E. coli had three disulfide bonds that appeared to be identical to those found in native BPTI, as assayed by sensitivity to iodoacetate, dithiothreitol, and urea. This expression/secretion system will make possible the production of variant BPTI molecules, thus allowing the perturbing effects of amino acid substitutions on BPTI folding, structure, and function to be assessed.  相似文献   

9.
Crystal structures, at 1.7 Å resolution, were solved for complexes between each of two chemically synthesized partially folded analogues of bovine pancreatic trypsin inhibitor (BPTI) with the proteolytically inactive rat trypsin mutant S195A. The BPTI analogue termed [14-38]Abu retains only the disulfide bond between Cys14 and Cys38, while Cys5, Cys30, Cys51, and Cys55 are replaced by isosteric α-amino-n-butyric acid residues. The analogue K26P,A27D[14-38]Abu contains two further replacements, by statistically favored residues, in the type I β-turn that has been suggested to be a main site for initiation of BPTI folding. As a control, the structure of the complex between S195A trypsin and wild-type BPTI was also solved. Despite significant differences in the degree of structure detected among these three BPTIs in solution by several biophysical techniques, their tertiary folds once bound to S195A trypsin in a crystalline lattice are essentially superimposable.  相似文献   

10.
Proteins destined for export across the cytoplasmic membrane via the post-translational Sec-dependent route have to be maintained in a largely unfolded state within the cytoplasm. In sharp contrast, only proteins that have folded into a native-like state within the cytoplasm are competent for export via the twin arginine translocation (Tat) pathway. Proteins that contain disulfide bonds, such as scFv antibody fragments, can be translocated via Tat only when expressed in Escherichia coli trxB gor mutant strains having an oxidizing cytoplasm. However, export is poor with the majority of the protein accumulating in the cytoplasm and only a fraction exported to the periplasmic space. Using a high throughput fluorescence screen, we isolated a mutant of the anti-digoxin 26-10 scFv from a large library of random mutants that is exported with a higher yield into the periplasm. In vitro refolding experiments revealed that the mutant scFv exhibits a 250% increase in the rate constant of the critical second phase of folding. This result suggests that Tat export competence is related to the protein folding rate and could be exploited for the isolation of faster folding protein mutants.  相似文献   

11.
When eukaryotic proteins with multiple disulfide bonds are expressed at high levels in Escherichia coli, the efficiency of thiol oxidation and isomerization is typically not sufficient to yield soluble products with native structures. Even when such proteins are secreted into the oxidizing periplasm or expressed in the cytoplasm of cells carrying mutations in the major intracellular disulfide bond reduction systems (e.g., trxB gor mutants), correct folding can be problematic unless a folding modulator is simultaneously coexpressed. In the present study we explored whether the bacterial twin-arginine translocation (Tat) pathway could serve as an alternative expression system for obtaining appreciable levels of recombinant proteins which exhibit complex patterns of disulfide bond formation, such as full-length human tissue plasminogen activator (tPA) (17 disulfides) and a truncated but enzymatically active version of tPA containing nine disulfides (vtPA). Remarkably, targeting of both tPA and vtPA to the Tat pathway resulted in active protein in the periplasmic space. We show here that export by the Tat translocator is dependent upon oxidative protein folding in the cytoplasm of trxB gor cells prior to transport. Whereas previous efforts to produce high levels of active tPA or vtPA in E. coli required coexpression of the disulfide bond isomerase DsbC, we observed that Tat-targeted vtPA and tPA reach a native conformation without thiol-disulfide oxidoreductase coexpression. These results demonstrate that the Tat system may have inherent and unexpected benefits compared with existing expression strategies, making it a viable alternative for biotechnology applications that hinge on protein expression and secretion.  相似文献   

12.
Chang J  Ballatore A 《FEBS letters》2000,473(2):183-187
In the presence of denaturant and thiol initiator, the native bovine pancreatic trypsin inhibitor (BPTI) denatures by shuffling its native disulfide bonds and converts to a mixture of scrambled isomers. The extent of denaturation is evaluated by the relative yields of the scrambled and native species of BPTI. BPTI is an exceedingly stable molecule and can be effectively denatured only by guanidine thiocyanate (GdmSCN) at concentrations higher than 3-4 M. The denatured BPTI consists of at least eight fractions of scrambled isomers. Their composition varies under increasing concentrations of GdmSCN. In the presence of 6 M GdmSCN, the most predominant fraction of scrambled BPTI accounts for 56% of the total structure of denatured BPTI. Structural analysis reveals that this predominant fraction contains the bead-form isomer of scrambled BPTI, bridged by three pairs of neighboring cysteines, Cys5-Cys14, Cys30-Cys38 and Cys51-Cys55. The extreme conformational stability of BPTI has important implications in its distinctive folding pathway.  相似文献   

13.
The X-ray structure of a variant of basic pancreatic trypsin inhibitor (BPTI) has been analyzed to determine the structural accommodation resulting from removal of a disulfide cross-link in a protein. The disulfide removed, Cys30-Cys51, has been implicated in both the folding pathway of the protein and its overall thermal stability. In the variant studied, C30A/C51A, the disulfide cysteines were replaced by less bulky alanines. The atomic displacements observed for C30A/C51A indicate a set of concerted shifts of two segments of chains, which together significantly diminish a packing defect at the site of the removed cysteine sulfur atoms. The observed structural changes are distributed asymmetrically around the sites of mutation, indicating that the adjacent beta-sheet is more resistant to the perturbation than the alpha-helix on the opposite side of the disulfide bond. The thermal parameters of groups involved in the structural accommodation are not significantly altered. A comparison of the X-ray structures reported for native BPTI determined in three different crystal forms indicates that the magnitude of its conformational variability exceeds that of the structural changes caused by the disulfide removal. This emphasizes the necessity of using isomorphous crystal systems to determine the relatively small effects due to mutation.  相似文献   

14.
The disulfide bond-coupled folding and unfolding mechanism (at pH 8.7, 25 degrees C in the presence of oxidized and reduced dithiothreitol) was determined for a bovine pancreatic trypsin inhibitor mutant in which cysteines 30 and 51 were replaced with alanines so that only two disulfides, between cysteines 14 and 38 and cysteines 5 and 55, remain. Similar studies were made on a chemically-modified derivative of the mutant retaining only the 5-55 disulfide. The preferred unfolding mechanism for the Ala30/Ala51 mutant begins with reduction of the 14-38 disulfide. An intramolecular rearrangement via thiol-disulfide exchange, involving the 5-55 disulfide and cysteines 14 and/or 38, then occurs. At least five of six possible one-disulfide bond species accumulate during unfolding. Finally, the disulfide of one or more of the one-disulfide bond intermediates (excluding that with the 5-55 disulfide) is reduced giving unfolded protein. The folding mechanism seems to be the reverse of the unfolding mechanism; the observed folding and unfolding reactions are consistent with a single kinetic scheme. The rate constant for the rate-limiting intramolecular folding step--rearrangements of other one-disulfide bond species to the 5-55 disulfide intermediate--seems to depend primarily on the number of amino acids separating cysteines 5 and 55 in the unfolded chain. The energetics and kinetics of the mutant's folding mechanism are compared to those of wild-type protein [Creighton, T. E., & Goldenberg, D. P. (1984) J. Mol. Biol. 179, 497] and a mutant missing the 14-38 disulfide [Goldenberg, D. P. (1988) Biochemistry 27, 2481]. The most striking effects are destabilization of the native structure and a large increase in the rate of unfolding.  相似文献   

15.
In the folding of bovine pancreatic trypsin inhibitor (BPTI), the single-disulfide intermediate [30-51] plays a key role. We have investigated a recombinant analog of [30-51] using a 2-dimensional nuclear magnetic resonance (2D-NMR). This recombinant analog, named [30-51]Ala, contains a disulfide bond between Cys-30 and Cys-51, but contains alanine in place of the other cysteines in BPTI to prevent the formation of other intermediates. By 2D-NMR, [30-51]Ala consists of 2 regions-one folded and one predominantly unfolded. The folded region resembles a previously characterized peptide model of [30-51], named P alpha P beta, that contains a native-like subdomain with tertiary packing. The unfolded region includes the first 14 N-terminal residues of [30-51] and is as unfolded as an isolated peptide containing these residues. Using protein dissection, we demonstrate that the folded and unfolded regions of [30-51]Ala are structurally independent. The partially folded structure of [30-51]Ala explains many of the properties of authentic [30-51] in the folding pathway of BPTI. Moreover, direct structural characterization of [30-51]Ala has revealed that a crucial step in the folding pathway of BPTI coincides with the formation of a native-like subdomain, supporting models for protein folding that emphasize the formation of cooperatively folded subdomains.  相似文献   

16.
The structure and folding of basic pancreatic trypsin inhibitor (BPTI) has been studied extensively by experimental means. We report a computer simulation study of the structural stability of various disulfide mutants of BPTI, involving eight 250-psec molecular dynamics simulations of the proteins in water, with and without a phosphate counterion. The presence of the latter alters the relative stability of the single disulfide species [5–55] and [30–51]. This conclusion can explain results of mutational studies and the conservation of residues in homologues of BPTI, and suggests a possible role of ions in stabilizing one intermediate over another in unfolding or folding processes. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
A major question in protein structural analysis concerns the applicability of results from model systems to other proteins. Theoretical approaches seem the best manner of transferring information from one system to another, but their accuracy in the model systems must first be tested with results from experiment. Since bovine pancreatic trypsin inhibitor (BPTI) is a model system for the evaluation of energy minimization and molecular dynamics routines, we can use folding and stability measurements to examine the reliability of these methods. All two-disulfide mutants of BPTI investigated thus far have two very slow folding reactions which have characteristics of proline isomerization. These reactions may occur because the non-native cis form of two of the four prolines in BPTI significantly destabilizes the folded state of the protein. Previous energy minimization studies of wild-type BPTI suggested that the cis form of Pro8 was the most destabilizing of the four prolines [Levitt,M. (1981) J. Mol. Biol., 145, 251-263]. In this paper, we show that mutation of Pro8----Gln in the two-disulfide bond mutant Val30/Ala51 results in a loss of the slowest folding reaction, consistent with Levitt's prediction.  相似文献   

20.
The disulfide folding pathway of bovine pancreatic trypsin inhibitor (BPTI) is characterized by the predominance of folding intermediates with native-like structures. Our laboratory has recently analyzed the folding pathway(s) of four 3-disulfide-containing proteins, including hirudin, potato carboxypeptidase inhibitor, epidermal growth factor, and tick anticoagulant peptide. Their folding mechanism(s) differ from that of BPTI by 1) a higher degree of heterogeneity of 1- and 2-disulfide intermediates and 2) the presence of 3-disulfide scrambled isomers as folding intermediates. To search for the underlying causes of these diversities, we conducted kinetic analyses of the reductive unfolding of these five proteins. The experiment of reductive unfolding was designed to evaluate the relative stability and interdependence of disulfide bonds in the native protein. It is demonstrated here that among these five proteins, there exists a striking correlation between the mechanism(s) of reductive unfolding and that of oxidative folding. Those proteins with their native disulfide bonds reduced in a collective and simultaneous manner exhibit both a high degree of heterogeneity of folding intermediates and the accumulation of scrambled isomers along the folding pathway. A sequential reduction of the native disulfide bonds is associated with the presence of predominant intermediates with native- like structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号