首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution of silicified cells in the leaf blades of Pleioblastuschino was investigated using a light microscope and a scanningelectron microscope equipped with an energy dispersive X-raymicroanalyser. The most dense accumulation of silica was foundin epidermal tissues. Little silica was deposited in vascularbundles and chlorenchyma, while more was deposited in bundlesheath and fusoid cells. In the epidermis, silica density andfrequency of silicified cells differed depending on cell type,although silica deposition was observed in most cell types.Heavy deposition was found in silica cells, bulliform cells,micro hairs and prickle hairs. Silica cells were the cell typemost frequently silicified (96.9–99.7%) in the adaxialand abaxial epidermis. Silica may be deposited as leaf tissuesage.Copyright 2000 Annals of Botany Company Pleioblastus chino(Franchet et Savatier) Makino, bamboo, silicified cells, leaf blade, epidermis, chlorenchyma, silica, clearing method, freeze-fracturing, freeze-drying, light microscopy, scanning electron microscopy, X-ray microanalysis  相似文献   

2.
Silicon (Si) accumulation in organs and cells is one of the most prominent characteristics of plants of the family Poaceae. Many species from this family are used as forage plants for animal feeding. The present study investigates in Brachiaria brizantha (Hochst. ex A. Rich.) Stapf. cv. Marandu: (1) the dry matter production and Si content in shoot due to soil Si fertilizations; (2) the Si distribution among shoot parts; and (3) the silica deposition and localization in leaves. Plants of B. brizantha cv. Marandu were grown under contrasting Si supplies in soil and nutrient solution. Silica deposition and distribution in grass leaf blades were observed using light microscope and scanning electron microscope equipped with an energy dispersive X-ray spectrometer (SEM-EDXS). Silicon concentration in the B. brizantha shoot increased according to the Si supply. Silicon in grass leaves decreased following the order: mature leaf blades > recently expanded leaf blades > non-expanded leaf blades. Silicon accumulates mainly on the upper (adaxial) epidermis of the grass leaf blades and, especially, on the bulliform cells. The Si distribution on adaxial leaf blade surface is non uniform and reflects a silica deposition exclusively on the cell wall of bulliform cells.  相似文献   

3.
Silicon has been considered to be important for normal growth and development of the rice plant (Oryza sativa L.). To investigate the physiological function of deposited silica in rice leaves, the hypothesis that silica bodies in the leaf epidermal system might act as a 'window' to facilitate the transmission of light to photosynthetic mesophyll tissue was tested. The silica content of leaves increased with supplied silicon and was closely correlated with the number of silica bodies per unit leaf area in the epidermal system. There was a significant difference in silica deposition and formation of silica bodies between Si-treated and non-treated leaves; silicon was polymerized inside the silica cells and bulliform cells of the epidermis, in Si-treated leaves. Although the 'windows' were only formed in leaves with applied silicon, optical properties of leaf transmittance, reflectance and absorptance spectra in Si-treated and non-treated leaves were almost equal. Furthermore, light energy use efficiency and quantum yield of Si-treated leaves were less than in leaves not containing silica bodies. Thus, silica bodies, at least based on the data, do not function as windows in rice leaves.  相似文献   

4.
罗汉果营养器官的结构   总被引:1,自引:1,他引:1  
1.罗汉果根、茎、叶的结构与葫芦科其它植物大致相似。不同之处有三方面:(1)叶子主脉中维管束为5个;(2)叶子中有硅质细胞成群分布;(3)块根具异常次生生长。在次生木质部中围绕导管形成形成层,由之分化出多个具韧皮部与木质部的小维管束。2.叶中的硅质细胞分布于表皮、栅栏组织、海绵组织中,多个细胞集合在一起。其细胞壁加厚并硅质化,细胞内容物消失。推测与增加叶子的支持力量有关。3.罗汉果雌株叶子上、下表皮气孔数之比为0.04,雄株为0.03,比值均很低,同时根据叶的解剖结构推测罗汉果为C_3植物。4.雌株叶子下表皮单位面积气孔数比雄株的多26%,差异很显著,值得进一步研究简化观察统计方法,以用于鉴别幼苗的性别。  相似文献   

5.
为揭示不同居群狗尾草(Setaria viridis(L.)Beauv.)叶片解剖特征的差异,了解不同生境下叶片形态的变异,本研究以江苏15个狗尾草居群为材料,采用石蜡切片法和改良的叶表皮制备方法对叶表皮及叶片横切面结构特征进行了显微观察和测定,并通过变异系数、主成分分析和聚类分析对叶表皮及叶片横切面的主要性状进行分析。结果表明,不同居群狗尾草的17个表型性状变异丰富,叶片中脉厚度和下表皮细胞厚度的变异程度较大;叶片厚度、平行脉维管束高度和宽度、叶中脉厚度、中脉维管束高度和宽度等指标是造成狗尾草不同居群表型差异的主要因素,同时这些结构特征也分别反映了狗尾草叶片的输导和支撑能力、表皮气孔器的特征和叶片抗逆能力。聚类分析结果显示,狗尾草的15个居群被划分为3类,且与生境分布基本吻合,即:水边和盐碱地居群、荒地居群、山地居群狗尾草的叶片厚度、维管束直径、泡状细胞厚度和气孔密度均依次增大,但气孔体积依次减小,表明这3个类群随海拔的升高抗旱性依次增强。本实验狗尾草叶片在不同生境中产生的不同程度变异分析对狗尾草的生态适应性研究具有重要意义。  相似文献   

6.
Developmental instability is the result of random environmental perturbations during development. Its absence (developmental stability) depends on an organism's ability to buffer environmental disturbances. Both genotype and environment influence the phenotypic expression of developmental instability and it is susceptible to selection pressure. We studied developmental instability (as indicated by increased within-individual asymmetry of repeated traits) in vegetative and reproductive structures of three populations of Cistus ladanifer L. living in different soil substrates (serpentine, siliceous and contact zone) to detect tolerance to serpentine soils. Serpentine soils, characterized by high concentrations of heavy metals (Ni, Cr, and Co), low levels of Ca/Mg ratio and high water deficit, can adversely affect plant performance. In this study we demonstrated that asymmetry and within-plant variance were higher in the contact zone population than either the silica or serpentine populations, proving the adaptation of C. ladanifer to serpentine soils. Within-population estimates of developmental instability were concordant for both vegetative and reproductive traits. There was little or no within-individual correlation among estimates of developmental instability based on different structures, i.e., plants that had highly asymmetric leaves always had high developmental instability in translational symmetry. Radial asymmetry of petals was negatively correlated with petal size, especially in silica soil plants, providing evidence of selection for symmetric and large petals. While leaf size was positively correlated with absolute fluctuating asymmetry, suggesting selection for small or intermediate size leaves. Serpentine soils presented the largest foliar and floral traits, as well as shoot elongation, while silica soil plants had the smallest scores. On the contrary, aboveground plant biomass was larger in silica soil plants, while the contact zone plants had the lowest biomass.  相似文献   

7.
Bulliform cells are large, thin‐walled and highly vacuolated cells, and play an important role in controlling leaf rolling in response to drought and high temperature. However, the molecular mechanisms regulating bulliform cell development have not been well documented. Here, we report isolation and characterisation of a rice leaf‐rolling mutant, named shallot‐like 2 (sll2). The sll2 plants exhibit adaxially rolled leaves, starting from the sixth leaf stage, accompanied by increased photosynthesis and reduced plant height and tiller number. Histological analyses showed shrinkage of bulliform cells, resulting in inward‐curved leaves. The mutant is recessive and revertible at a rate of 9%. The leaf rolling is caused by a T‐DNA insertion. Cloning of the insertion using TAIL‐PCR revealed that the T‐DNA was inserted in the promoter region of LOC_Os07 g38664. Unexpectedly, the enhanced expression of LOC_Os07 g38664 by the 35S enhancer in the T‐DNA is not responsible for the leaf rolling phenotype. Further, the enhancer also exerted a long‐distance effect, including up‐regulation of several bulliform cell‐related genes. sll2 suppressed the outward leaf rolling of oul1 in the sll2oul1 double mutant. We conclude that leaf rolling in sll2 could be a result of the combined effect of multi‐genes, implying a complex network in regulation of bulliform cell development.  相似文献   

8.

Aims

Rice is a well-known silica-accumulating plant. The dumbbell-shaped silica bodies in the silica cells in rice leaf epidermis are formed via biosilicification, but the underlying mechanisms are largely unknown.

Methods

Leaves at different developmental stages were collected to investigate silica cell differentiation by analyzing structures and silicon localization in the silica cells.

Results

Exogenous silicon application increased both shoot and root biomass. When silicon was supplied, silica cells in the leaf epidermis developed gradually into a dumbbell-shape and became increasingly silicified as leaves aged. Silicon deposition in the silica cells was not completed until the leaf was fully expanded. Multiple lines of evidence suggest that lignification of silica cell walls precedes silicon deposition in the lumen of silica cells. The organized needle-like silica microstructures were formed by moulding the inner cell walls and filling up the lumen of the silica cell following leaf maturation.

Conclusions

Two processes were involved in silicon deposition: (1) the silica cell wall was lignified and silicified, and then (2) the silicon was deposited gradually in silica cells as leaves aged. Silica body formation was not completed until the leaf was fully mature.  相似文献   

9.
Silicon has been considered to be important for normal growthand development of the rice plant (Oryza sativa L.). To investigatethe physiological function of deposited silica in rice leaves,the hypothesis that silica bodies in the leaf epidermal systemmight act as a ‘window’ to facilitate the transmissionof light to photosynthetic mesophyll tissue was tested. Thesilica content of leaves increased with supplied silicon andwas closely correlated with the number of silica bodies perunit leaf area in the epidermal system. There was a significantdifference in silica deposition and formation of silica bodiesbetween Si-treated and non-treated leaves; silicon was polymerizedinside the silica cells and bulliform cells of the epidermis,in Si-treated leaves. Although the ‘windows’ wereonly formed in leaves with applied silicon, optical propertiesof leaf transmittance, reflectance and absorptance spectra inSi-treated and non-treated leaves were almost equal. Furthermore,light energy use efficiency and quantum yield of Si-treatedleaves were less than in leaves not containing silica bodies.Thus, silica bodies, at least based on the data, do not functionas windows in rice leaves. Key words: Silicon, window hypothesis, rice, optical property, quantum yield  相似文献   

10.
BACKGROUND AND AIMS: The leaf anatomy and ultrastructure of Deschampsia antarctica (Poaceae) plants growing in three different habitats (a dry site in the Antarctic tundra, a wet site in a zone exposed to sea spray and a greenhouse) were investigated. The ultrastructure of the leaves of D. antarctica has not been studied before. METHODS: Semi-thin sections of the D. antarctica leaves were stained with toluidine blue and viewed using a light microscope. Ultra-thin sections stained with uranyl acetate and lead citrate were examined using a transmission electron microscope. KEY RESULTS: Plants growing in the Antarctic tundra and in a greenhouse had stronger xerophytic features than those growing at the seashore. The stress response of D. antarctica plants growing in the wet environment, exposed to high salinity and flooding, included: irregular mesophyll cells, large intercellular spaces in the parenchymatic layer, bulliform epidermal cells and vascular bundles surrounded with deformed outer and inner bundle sheaths of leaves. The highest number of sclerenchymatic fibres is characteristic of the leaves of plants growing in a greenhouse, whereas the smallest was of plants growing in a wet habitat. Stress conditions can disturb the formation of sclerenchymatic fibres. In plants growing in the Maritime Antarctic the chloroplasts of the mesophyll cells of leaves are of an irregular shape, with pockets or invaginations inside the organelles and outgrowths. Both of them make the surfaces of chloroplasts larger, and result in an increase in the amount of substances exchanged between the chloroplasts and cytoplasm or the other organelles. The leaf mesophyll cells of D. antarctica plants growing in Antarctica contain atypical structures including numerous vesicles of different sizes and concentrically arranged membranes. CONCLUSIONS: The anatomical and ultrastructural features of the leaf and their changes under stress conditions are considered in relation to the adaptations of D. antarctica to the climate conditions in the Maritime Antarctic.  相似文献   

11.
12.
Ash and silica content and their depositional patterns in differenttissues of the mature corn plant (Zea mays L.) were determined.Ash and silica were highest in the leaf blades (up to 16.6 and10.9 per cent, respectively) followed by the leaf sheath, tassel,roots, stem epidermis and pith, and ear husk. The percentageof ash as silica was also highest in the leaves. Silica wasextremely low in the kernels. The upper stem epidermis and pithcontained nearly twice the silica content as did the lower portion.The patterns of ash and silica distribution were similar inplants grown in two different areas of Kansas, but were in lowerconcentration in the leaves and leaf sheaths from the area withlower soluble silica in the soil. Silica was deposited in theepidermis in a continuous matrix with cell walls showing serratedinterlocking margins in both leaves and stem. Rows of lobedphytoliths of denser silica were found in the epidermis as wellas highly silicified guard cells and trichomes. The silica matrixof the epidermis appears smooth on the outer surface and porousor spongy on the inner surface. Zea mays L. Corn, maize, ash content, silica deposition, scanning electron microscopy  相似文献   

13.
As an important agronomic trait, leaf rolling in rice (Oryza sativa L.) has attracted much attention from plant biologists and breeders. Moderate leaf rolling increases the amount of photosynthesis in cultivars and hence raises grain yield. Here, we describe the map-based cloning of the gene RL14, which was found to encode a 2OG-Fe (II) oxygenase of unknown function. rl14 mutant plants had incurved leaves because of the shrinkage of bulliform cells on the adaxial side. In addition, rl14 mutant plants displayed smaller stomatal complexes and decreased transpiration rates, as compared with the wild type. Defective development could be rescued functionally by the expression of wild-type RL14. RL14 was transcribed in sclerenchymatous cells in leaves that remained wrapped inside the sheath. In mature leaves, RL14 accumulated mainly in the mesophyll cells that surround the vasculature. Expression of genes related to secondary cell wall formation was affected in rl14-1 mutants, and cellulose and lignin content were altered in rl14-1 leaves. These results reveal that the RL14 gene affects water transport in leaves by affecting the composition of the secondary cell wall. This change in water transport results in water deficiency, which is the major reason for the abnormal shape of the bulliform cells.  相似文献   

14.
In plants, specialized epidermal cells are arranged in semiordered patterns. In grasses such as maize, stomata and other specialized cell types differentiate in linear patterns within the leaf epidermis. A variety of mechanisms have been proposed to direct patterns of epidermal cell differentiation. One class of models proposes that patterns of cellular differentiation depend on the lineage relationships among epidermal cells. Another class of models proposes that epidermal patterning depends on positional information rather than lineage relationships. In the dicot epidermis, cell lineage is an important factor in the patterning of stomata, but not trichomes. In this study, the role of cell lineage in the linear patterning of stomata and bulliform cells in the maize leaf epidermis is investigated. Clones of epidermal cells in juvenile leaves were marked by excision of dSpm from gl15-m and in adult leaves by excision of Ds2 from bz2-m. These clones were analyzed in relation to patterns of stomata and bulliform cells, testing specific predictions of clonal origin hypotheses for the patterning of these cell types. We found that the great majority of clones analyzed failed to satisfy these predictions. Our results clearly show that lineage does not account for the linear patterning of stomata and bulliform cells, implying that positional information must direct the differentiation patterns of these cell types in maize.  相似文献   

15.
Some Factors in Relation to Bulliform Cell Silicification in the Grass Leaf   总被引:1,自引:0,他引:1  
The formation of discrete ‘tablets’ of hydratedsilica in the bulliform cells of the leaf blade was followedover a 16-day period in three species of the Gramineae representingdifferent habitats. Seedlings of Oryza sativa (rice) and Cynodondactylon (Bermuda Grass) were cultured under growth-cabinetconditions at levels of 50 and 500 ppm dissolved silica (SiO2)in the nutrient solution. In addition, bulliform depositionwas studied in mature tiller leaves of Sieglingia decumbens(Heath Grass). Attached leaves, as well as those excised fromthe culm, were used. Initial stages of tablet formation were observed by the 2-dayharvest in the central and basal zones of the fully expandedseedling blades. Deposition did not occur at a stage when bulliformturgor changes might influence blade evolvement. At the 16-dayharvest, deposition was heaviest in the tip zone, and decreasedprogressively towards the base of the blade. In addition, proportionatelyhigher tablet counts (P = 0.05) generally were absent from theleaves grown at the higher silica level. This indicated a limitedavailability of deposition sites. These results are discussed in relation to (i) cellular maturation;(ii) internal leaf anatomy; (iii) leaf expansion; (iv) a basipetalsenescence gradient within the leaf blade. Certain of theseare considered to be possible limiting factors to silica depositionin the grass leaf.  相似文献   

16.
为了研究沙棘雌、雄株叶片的第二性征,本文采用石蜡切片法观察了沙棘雌、雄株叶片结构的差异。结果表明:(1)沙棘雌、雄株叶片均由表皮、叶肉和叶脉3部分组成,表皮均由1层细胞构成,表皮毛发达,上表皮有拟泡状细胞;叶肉栅栏组织与海绵组织分化明显。(2)雌株上表皮具更多的拟泡状细胞,其主脉韧皮部薄壁细胞及其下方的一些薄壁细胞含较多的后含物,下表皮的表皮毛更浓密;而雄株的叶片厚度、叶片上表皮厚度、栅栏组织厚度、栅栏组织厚度/海绵组织厚度均显著大于雌株,且其主脉维管束更发达。结果表明,沙棘雌雄株叶片解剖结构存在明显差异,这些差异是第二性征的表现,也是沙棘长期进化中形成的稳健的适应策略,可能有利于该物种的繁衍。  相似文献   

17.
Uzunova  A.N.  Popova  L.P. 《Photosynthetica》2000,38(2):243-250
Light and electron microscopy were used to relate histological and ultrastructural differences of barley leaves treated with different concentrations of salicylic acid (SA, 100 µM-1 mM). Light microscopy revealed that the thickness of all leaf tissue components decreased in SA-treated plants. The effect was most pronounced on the width of the adaxial epidermis and on the size of the bulliform cells. The chloroplast ultrastructure was also affected by SA treatment. Swelling of grana thylakoids in various degrees, coagulation of the stroma, and increase in chloroplast volume were observed. 1 mM SA caused a vast destruction of the whole plastid structure.  相似文献   

18.
Silica in plants can be stained by silver Chromate, methyl red, and a colorless crystal violet lactone which are adsorbed by the silanol groups resulting in red-brown, red, and blue colors, respectively. Specialized silica cells in grasses can also be detected through polarization colors due to form birefringence. Silica in the bulliform and silica cells of rice leaves is amorphous and is made up of 1–2-nm particles aggregating into 2.5 X 0.4-μm rods with oblique ends.  相似文献   

19.
SANGSTER  A. G. 《Annals of botany》1970,34(3):557-570
Following 1, 2, 4, or 8 weeks of growth in a silica-minimalsolution, tillers of Sieglingia decumbens (Heath Grass) weretransferred for 8 days to a nutrient solution which contained50 or 100 ppm silica. The resultant formation of intracellularopal phytoliths (silica bodies) was compared for the four developmentalstages of leaf 3. Characteristically different phytolith typesoccurred in leaves of different ages. Senescent, in contrastto younger, mature leaves, typically exhibited extensive extracellularsilicification of the mesophyll, in addition to deposits instomatal, long, and bulliform cells of adaxial epidermis; depositionin abaxial silica cells and long cells, characteristic of youngleaves, was much reduced, or absent. Physico-chemical factors and cytoplasmic changes associatedwith senescence are discussed in relation to intracellular opalphytolith formation in mature leaves of S. decumbens. In thisrespect, the tendency of silicic acid sols to polymerize inthe presence of an organic matrix and mineral cations is consideredto be significant.  相似文献   

20.
Silica (SiO2.nH2O) is deposited in large quantities in the shootsystems of grasses. In the leaf epidermal system, it is incorporatedinto the cell wall matrix, primarily of outer epidermal walls,and within the lumena of some types of epidermal cells. This biogenic silica can be stained specifically with methylred, crystal violet lactone, and silver amine chromate. At theultrastructural level, the silica in lumens of silica cells,bulliform cells and long epidermal cells is made up of rodsabout 2.5 µm in length and 0.4µm in width. Ultimateparticles in the rods range from 1 to 2 nm in diameter. In contrast,silica in the cell wall matrix of trichomes and outer wallsof long epidermal cells is not rod-shaped, but rather, formsroughly spherical masses. Detailed analyses are presented on the frequencies of occurrenceof the different types of epidermal cells that contain silicain the leaves of representative C3 and C4 grasses. The C4 grasseshave higher frequencies of bulliform cell clusters, silica cells,and long epidermal cells, whereas the C3 grasses have higherfrequencies of trichomes. No correlation was found in the frequencyof occurrence of silica bodies in bulliform cells for C3 grassesas compared with C4 grasses. Of all the grasses examined, Coix,Oryza, and Eleusine had the highest densities of such bodies,and some taxa had no silica bodies apparent in their bulliformcells. The idea that silica bodies in bulliform cells and silica cellsmight act as "windows’ and trichomes might function as‘light pipes’ to facilitate light transmission throughthe epidermal system to photosynthetic mesophyll tissue belowwas tested. The experimental data presented do not support eitherof these hypotheses. C2 and C4 grasses, biogenic silica, light pipes, window hypothesis, silica staining, silica ultrastructure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号