首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the modulation of metabolic dysfunctions, adiponectin levels, and cardiac dysfunctions of type 2 diabetes mellitus (T2DM) by a combination of the insulin sensitizer rosiglitazone and angiotensin receptor blocker telmisartan in an experimental rat model. Fifty male adult Sprague-Dawley rats were divided equally into 5 groups. Group I: fed normal chow; served as normal control group. Groups II-V: fed a high-fat diet (HFD) for 2 weeks, followed by injection of streptozotocin (STZ; 35 mg/kg) to create a model of T2DM. Group II: treated with vehicle. Group III: treated with rosiglitazone (4 mg/kg). Group IV: treated with telmisartan (5 mg/kg). Group V: treated with both agents. Untreated HFD-STZ rats showed elevated fasting blood glucose, insulin, homeostasis model assessment (HOMA) index, triglycerides (TGs), low-density lipoprotein cholesterol (LDL), and total serum cholesterol (TC), with a decrease in high-density lipoprotein cholesterol (HDL) and adiponectin levels (p < 0.001). Rosiglitazone exerted more improvement in all parameters than telmisartan did, and a combination of both did not augment the improvement further, except for TGs and adiponectin. For the isolated atrial study, a combination of rosiglitazone and telmisartan corrected the responses of the atria of HFD-STZ rats to the negative inotropic effect induced by adenosine better than either one did alone, whereas this combination, surprisingly, significantly attenuated the positive inotropic response to β-adrenoreceptor and α-adrenoreceptor agonists. In conclusion, rosiglitazone significantly improved the metabolic and cardiac dysfunctions in T2DM. Moreover, a combination of rosiglitazone and telmisartan offered more improvement in serum TGs and adiponectin, and restored the atrial inotropic response to adenosine. Surprisingly, this combination significantly attenuates the positive inotropic response to α1-adrenoreceptor and β-adrenoreceptor agonists.  相似文献   

2.
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1Tyr632, p-AktSer473, β-arrestin-2, c-Src, p-AS160Thr642, and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.  相似文献   

3.
Iron-loaded cardiac myocytes stimulate cardiac myofibroblast DNA synthesis   总被引:2,自引:0,他引:2  
Zinc is an essential nutrient with a wide range of functions and closely involved in a variety of enzymatic processes of importance in glucose, protein and lipid metabolism. Ghrelin is the endogenous ligand of the G protein coupled growth hormone secretagogue receptor. The regulatory mechanism that explain the biosynthesis and secretion of ghrelin in the gastrointestinal tract has not been clarified. This study was undertaken to examine the effect of zinc supplementation on the streptozotocin (STZ)-induced diabetic rats, which exhibits ghrelin production and secretion, and lipid metabolism on the gastrointestinal tract. The animals were divided into four groups. Group I: Non-diabetic untreated animals. Group II: Zinc-treated non-diabetic rats. Group III: STZ-induced diabetic untreated animals. Group IV: Zinc-treated diabetic animals. Zinc sulfate was given to some of the experimental animals by gavage at a dose of 100 mg/kg body weight every day for 60 days. In the zinc-treated diabetic group, the blood glucose levels decreased and body weight increased as compared to the diabetic untreated group. Zinc supplementation to STZ-diabetic rats revealed the protective effect of zinc on lipids parameters such as total lipid, cholesterol, HDL-cholesterol and atherogenic index. There is no statistically change in ghrelin-immunoreactive cells in gastrointestinal tissue. But, it has found that zinc supplementation caused a significant reduction in densities of ghrelin-producing cells of fundic mucosa of zinc-treated diabetic animals as compared to untreated, non-diabetic controls. Zinc supplementation may contribute to prevent some complications of diabetic rats, biochemically.  相似文献   

4.
目的:探讨阿托伐他汀通过调节RGS6/NAD(P)H氧化酶/活性氧生成通路保护糖尿病心肌病大鼠心功能的药理作用机制。方法:40只6周龄雄性Wistar大鼠按随机数字表法随机分为对照组,糖尿病心肌病模型组,低剂量阿托伐他汀组,高剂量阿托伐他汀组,每组10只。实验过程中动态监测大鼠体质量及血脂水平;实验结束后脉冲多普勒检测各组大鼠心功能指标;组织活性氧检测试剂盒检测心肌组织中活性氧的水平;免疫组化法检测大鼠心肌组织中RGS6的表达;Western blot法检测大鼠心肌组织中RGS6及NAD (P)H氧化酶活性亚单位p47phox和p67phox的水平。结果:与对照组相比,糖尿病心肌病模型大鼠体质量明显减少(P0.01),血脂水平明显升高(P0.01),心脏E/A、LVEF、FS值降低(P0.01),心肌组织活性氧生成明显增多(P0.01),心肌组织RGS6及p47phox、p67phox表达明显上调(P0.01),而不同剂量阿托伐他汀干预均可有效逆转上述指标的改变。结论:阿托伐他汀对糖尿病心肌病大鼠的心脏具有明显保护作用,其机制可能与对RGS6/NAD(P)H氧化酶/活性氧生成通路的抑制有关。  相似文献   

5.
Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.  相似文献   

6.
Diabetes mellitus (DM) is an independent risk factor for heart disease and its underlying mechanisms are unclear. Increased expression of diabetic marker miR-29 family miRNAs (miR-29a, b and c) that suppress the pro-survival protein Myeloid Cell Leukemia 1(MCL-1) is reported in pancreatic β-cells in Type 1 DM. Whether an up-regulation of miR-29 family miRNAs and suppression of MCL-1 (dysregulation of miR-29-MCL-1 axis) occurs in diabetic heart is not known. This study tested the hypothesis that insulin regulates cardiac miR-29-MCL-1 axis and its dysregulation correlates with DM progression. In vitro studies with mouse cardiomyocyte HL-1 cells showed that insulin suppressed the expression of miR-29a, b and c and increased MCL-1 mRNA. Conversely, Rapamycin (Rap), a drug implicated in the new onset DM, increased the expression of miR-29a, b and c and suppressed MCL-1 and this effect was reversed by transfection with miR-29 inhibitors. Rap inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in HL-1 cells. Moreover, inhibition of either mTORC1 substrate S6K1 by PF-4708671, or eIF4E-induced translation by 4E1RCat suppressed MCL-1. We used Zucker diabetic fatty (ZDF) rat, a rodent model for DM, to test whether dysregulation of cardiac miR-29-MCL-1 axis correlates with DM progression. 11-week old ZDF rats exhibited significantly increased body weight, plasma glucose, insulin, cholesterol, triglycerides, body fat, heart weight, and decreased lean muscle mass compared to age-matched lean rats. Rap treatment (1.2 mg/kg/day, from 9-weeks to 15-weeks) significantly reduced plasma insulin, body weight and heart weight, and severely dysregulated cardiac miR-29-MCL1 axis in ZDF rats. Importantly, dysregulation of cardiac miR-29-MCL-1 axis in ZDF rat heart correlated with cardiac structural damage (disorganization or loss of myofibril bundles). We conclude that insulin and mTORC1 regulate cardiac miR-29-MCL-1 axis and its dysregulation caused by reduced insulin and mTORC1 inhibition increases the vulnerability of a diabetic heart to structural damage.  相似文献   

7.
In this study, we established systemic in-vivo evidence from molecular to organism level to explain how diabetes can aggravate myocardial ischemia-reperfusion (I/R) injury and revealed the role of insulin signaling (with specific focus on Akt/GLUT4 signaling molecules). The myocardial I/R injury was induced by the left main coronary artery occlusion for 1 hr and then 3 hr reperfusion in control, streptozotocin (STZ)-induced insulinopenic diabetes, and insulin-treated diabetic rats. The diabetic rats showed a significant decrease in heart rate, and a prolonged isovolumic relaxation (tau) which lead to decrease in cardiac output (CO) without changing total peripheral resistance (TPR). The phosphorylated Akt and glucose transporter 4 (GLUT 4) protein levels were dramatically reduced in both I/R and non-I/R diabetic rat hearts. Insulin treatment in diabetes showed improvement of contractile function as well as partially increased Akt phosphorylation and GLUT 4 protein levels. In the animals subjected to I/R, the mortality rates were 25%, 65%, and 33% in the control, diabetic, and insulin-treated diabetic group respectively. The I/R-induced arrhythmias and myocardial infarction did not differ significantly between the control and the diabetic groups. Consistent with its anti-hyperglycemic effects, insulin significantly reduced I/R-induced arrhythmias but had no effect on I/R-induced infarctions. Diabetic rat with I/R exhibited the worse hemodynamic outcome, which included systolic and diastolic dysfunctions. Insulin treatment only partially improved diastolic functions and elevated P-Akt and GLUT 4 protein levels. Our results indicate that cardiac contractile dysfunction caused by a defect in insulin-stimulated Akt/GLUT4 may be a major reason for the high mortality rate in I/R injured diabetic rats.  相似文献   

8.
Ghrelin is a multifunctional regulatory peptide that has widespread endocrine and metabolic effects in mammals and birds. The present study aimed to investigate the possible effect of ghrelin on blood hormone and biochemical indices in turkey. A total of forty-eight 28 day-old turkeys were divided into three groups for tests. Ghrelin was injected at the onset of the experiment (28-day old birds). Treatment doses were as follows: treatment 1 (control) without injection; treatment 2—50 ng ghrelin/kg body weight (BW); and treatment 3—100 ng ghrelin/kg BW. Two blood samples were taken from the birds, one at 12 h (short-term effect) and the other at 40 days (long-term effect). Blood analyses showed that level of corticosterone increased in response to ghrelin treatments G50 and G100 in samples taken on days 28 and 68 (p?<?0.01). There was an increase in T4 concentration in the G50 and G100 groups in comparison with the control. Blood glucose increased in response to ghrelin administration, and total cholesterol and triglyceride concentrations decreased in the two samples in response to higher ghrelin dosage (p?<?0.01). In conclusion, the peripheral administration of ghrelin in turkeys may increase levels of serum corticosterone, glucose and T4. Therefore, total cholesterol and triglyceride may decrease in birds following ghrelin administration. Ghrelin may increase metabolic rate (due to increases in T4) and regulate lipogenesis in poultry species such as turkey.  相似文献   

9.
目的:探讨急性和慢性运动对2型糖尿病(T2DM)大鼠脂肪组织明磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(AKT)/葡萄糖运载体4(GLUT4)信号通路的影响。方法:15月龄SD雄性大鼠52只随机分为正常对照组(n=13)和高脂组(n=39),分别喂养普通和高脂饲料。8周后,高脂组体重>正常对照组20%,注射小剂量STZ后,血糖>16.7 mmol/l,造模成功。将糖尿病模型组随机分为糖尿病对照组(DC,n=13),糖尿病慢性运动组(DCE,n=13),糖尿病急性运动组(DAE,n=13)。DCE组进行8周的游泳运动,DAE组进行一次性游泳运动。测定血脂,血糖和血清胰岛素,Western blot法测定脂肪PI3K、AKT和GLUT4蛋白含量。结果:糖尿病组体重、血脂、血糖、胰岛素显著高于正常对照组(P均<0.01);高密度脂蛋白胆固醇(HDL-C)水平降低(P<0.05),脂肪组织中PI3K、AKT和GLUT4蛋白表达下降(P均<0.01)。糖尿病慢性运动组体重、血脂、血糖、胰岛素均出现显著性下降(P均<0.01);HDL-C升高(P<0.05),脂肪PI3K、AKT和GLUT4蛋白表达上升(P<0.01)。糖尿病急性运动组血脂、血糖、胰岛素下降(P均<0.05);HDL-C升高(P<0.05),脂肪PI3K、AKT和GLUT4含量显著上升(P均<0.05)。结论:①高脂饮食结合小剂量STZ诱导的T2DM大鼠脂肪组织PI3K/AKT通路受损,降低了胰岛素的敏感性。②急性、慢性有氧运动,均可以通过PI3K/AKT通路,改善糖脂代谢紊乱,慢性运动略优于急性运动。  相似文献   

10.
The aim of the study is to clarify the effect of ghrelin treatment on the messenger RNA (mRNA) expression of the cannabinoid receptor 1 (Cnr1/CB1) and glucagon‐like peptide 1 receptor (Glp1r/GLP‐1R) as well as microRNAs (miR)‐122 and miR‐33a in the liver of rats with type 2 diabetes mellitus (T2DM). Adult Sprague‐Dawley rats were divided into three groups: control (n = 7), T2DM (n = 7), and treatment (n = 7). Control animals received tap water. T2DM was induced by feeding 10% fructose in drinking water for 2 weeks followed by a single injection of streptozotocin (40 mg/kg, intraperitoneally [IP]). In the treatment group, diabetic rats were injected ghrelin (25 μg/kg, IP) for 14 days. Serum lipid profiles were evaluated, and mRNA expression levels of Cnr1 and Glp1r in the liver were detected using quantitative real‐time polymerase chain reaction (RT‐qPCR). In addition, miR‐122 and miR‐33a levels were measured using RT‐qPCR. Serum triglycerides, low‐density lipoprotein cholesterol, and very‐low‐density lipoprotein cholesterol significantly increased in the T2DM group compared with control rats but ghrelin treatment showed no effect on serum lipid levels. The mRNA expression levels of Cnr1 and Glp1r decreased in the T2DM group compared with the control group. These reductions were significantly increased in the T2DM group treated with ghrelin. Furthermore, the increase in miR‐33a expression level was reduced in the treatment group compared to rats with T2DM. Our findings suggested that ghrelin treatment may alter the mRNA expression levels of CB1 and GLP‐1R in the liver of rats with T2DM. The mRNA levels of Cnr1 and Glp1r may inversely correlate with the expression level of miR‐33a but not miR‐122.  相似文献   

11.
ABSTRACT: BACKGROUND: Diabetic cardiovascular disease is associated with decreased adiponectin and increased oxidative stress. This study investigated the effect of telmisartan on the expression of adiponectin receptor 2 (adipoR2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits in the heart and the expression of adiponectin receptor 1 (adipoR1) in aorta in type 2 diabetic rats. METHODS: Type 2 diabetes was induced by high-fat and high-sugar diet and intraperitoneal injection of a low dose of streptozotocin (STZ). Heart function, adipoR2, p22phox, NOX4, glucose transporter 4(GLUT4), monocyte chemoattractant protein-1(MCP-1) and connective tissue growth factor CTGFin the heart, and adipoR1, MCP-1 and nuclear factor kappa B (NF-kappaB) in aorta were analyzed in controls and diabetic rats treated with or without telmisartan (5mg/kg/d) by gavage for 12 weeks. RESULTS: Heart function, plasma and myocardial adiponectin levels, the expression of myocardial adipoR2 and GLUT4 were significantly decreased in diabetic rats (P<0.05). The expression of myocardial p22phox, NOX4, MCP-1, and CTGF was significantly increased in diabetic rats (P<0.05). The expression of adipoR1 was decreased and the expression of MCP-1 and NF-kappaB was increased in the abdominal aorta in diabetic rats (P<0.05). Telmisartan treatment significantly attenuated these changes in diabetic rats (P<0.05). CONCLUSIONS: Our results suggest that telmisartan upregulates the expression of myocardial adiponectin, its receptor 2 and GLUT4. Simultaneously, it downregulates the expression of myocardial p22phox, NOX4, MCP-1, and CTGF, contributing so to the improvement of heart function in diabetic rats. Telmisartan also induces a protective role on the vascular system by upregulating the expression of adipoR1 and downregulating the expression of MCP-1 and NF-kappaB in the abdominal aorta in diabetic rats. KEYWORDS: Telmisartan; Adiponectin receptor; NADPH oxidase; Type 2 diabetic; Cardiac; Aorta.  相似文献   

12.
目的:探讨Ghrelin对糖尿病大鼠下丘脑弓状核胃扩张敏感神经元和胃运动的影响。方法:逆行追踪结合免疫组化观察ARC中GHSR-1的表达,细胞外放电记录,观察ghrelin对GD神经元放电活动的影响及电刺激ARC对GD神经元放电活动和胃运动的影响。结果:电生理实验结果表明,在ARC Ghrelin能够能激发GD兴奋性神经元(GD-E)和GD抑制性神经元(GD-I)。然而,ghrelin可以兴奋更少的GD-E神经元,在正常大鼠中ghrelin对于GD-E的兴奋作用比在DM大鼠中的作用弱。在体胃运动研究表明,在ARC中微量注射ghrelin可以明显的增强胃运动,并且呈现剂量依赖关系。Ghrelin在糖尿病大鼠促胃动力作用低于正常大鼠。Ghrelin诱导的效应可被生长激素促分泌素受体(GHSR)拮抗剂阻断[d-lys-3]-GHRP-6或bim28163。放射免疫法和实时荧光定量PCR数据表明胃血浆ghrelin水平,在ARC ghrelin mRNA的表达水平先上升后下降,糖尿病大鼠(DM)中,在ARC中GHSR-1a mRNA表达保持在一个比较低的水平。结论:ghrelin可以调节GD敏感神经元以及胃运动,通过ARC中ghrelin受体。在糖尿病大鼠中,Ghrelin促进胃运动作用减弱可能与ARC中ghrelin受体表达减少有关。  相似文献   

13.
The present study aimed to evaluate the importance of cyanidin 3-glucoside (C3G) of diabetic cardiomyopathy in diabetic rats. The rats were induced with diabetic using streptozotocin and total triglyceride (TG) and total cholesterol (TC) were determined. The range of myocardial enzymes such as aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LD) were also estimated, further, the Immuno histochemical analysis and western blot investigation were determined for the actual activity of C3G. Results indicated that the marker enzymes such as CK, LD and AST were significantly (P < 0.05) increased in STZ administered rats (DM group), while the levels of these elevated marker enzymes of cardiac injury significantly (P < 0.05) declined in the DM + C3G group, as compared to the diabetic group of rats. Additionally, a decrease in the level of TNF-alpha and interleukin-6, was noticed in the C3G treated group as compared to diabetic group. Finally, blotting analysis clearly confirmed that theC3G treatment resulted to higher level response of Bcl-2 and lower level response of caspase-3 and BAX. In conclusion, C3G a natural antioxidant may prevent cardiovascular complications by ameliorating oxidative damage, inflammation, metabolic dysfunctions and apoptosis pathways in type 2 diabetes.  相似文献   

14.
Ghrelin, an endogenous ligand for the growth-hormone-secretagogue receptor, is a 28-amino acid peptide with a post-translational acyl modification necessary for its activity. It has central nervous system actions that affect appetite, body mass and energy balance. An intracerebroventricular (ICV) injection protocol of sub-nanomolar doses of ghrelin, known to alter the morphology of ACTH and GH producing pituicytes and plasma levels of these hormones, was used to provide an overview of metabolic changes linked to energy metabolism. Variables measured were: food intake (FI), water intake (WI), fecal mass, urine volume, body weight (BW), retroperitoneal (RP) and epididymal (EPI) white adipose tissue (WAT), and changes in serum leptin, insulin, triglycerides, cholesterol, and glucose. Five injections of rat ghrelin or PBS (n = 8 per group) were given ICV every 24 h (1 μg/5 μL PBS) to adult male rats. Ghrelin had a positive and cumulative effect on FI, WI and BW (p < 0.05), but not feces mass or urine volume (p > 0.05). Centrally applied ghrelin clearly increased RP WAT (by 235%, p < 0.001), EPI WAT (by 85%, p < 0.05) and serum insulin levels (by 43%, p < 0.05), and decreased serum leptin levels (by 77%, p < 0.05) without (p > 0.05) evoking changes in blood triglyceride cholesterol, or glucose levels.

These data and the available literature clearly document that exposure of the brain of normal rats, over time, to sub-nanomolar doses of ghrelin results in metabolic dysregulation culminating in increased body mass, consummatory behavior, and lipid stores as well as changes in blood leptin/insulin levels. Thus, modulation of central ghrelin receptors may represent a pharmacological approach for controlling multiple factors involved in energy balance and obesity.  相似文献   


15.
Alpha-lipoic acid (ALA) is widely used as an antioxidant for the treatment of diabetes and its complications; however, the pro-oxidant potential of ALA has recently been reported. This study was designed to investigate whether ALA supplementation could have pro-oxidant effects on cardiac tissues in normal and diabetic rats. Diabetes was induced by a single dose of streptozotocin (STZ; 55 mg/kg (intraperitoneal). Diabetic and normal rats were treated with ALA (100 mg kg?1 day?1) for 45 days. ALA supplementation resulted in oxidative protein damage as evident by significant reduction in the cardiac levels of protein thiol in ALA-treated normal rats (P?<?0.01) together with a significant elevation (P?<?0.001) in the plasma levels of advanced oxidation protein products in ALA-treated normal rats and in ALA?+?STZ-diabetic rats compared with the normal control rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has emerged as the major source of superoxide anion and enhanced oxidative damage in heart failure. ALA supplementation increased the myocardial immunoreactivity of p47phox subunit of NADPH oxidase in both normal nondiabetic and diabetic rats reflecting its pro-oxidant effect. Data showed that ALA supplementation failed to prevent cardiac complications in diabetic rats and led to cardiac toxicity in normal rats as indicated by pathological changes (cellular infiltration, fibrosis, and degeneration) and by the elevation of serum cardiac biomarkers compared with normal controls. The pro-oxidant effects of ALA suggest that careful selection of appropriate doses of ALA in reactive oxygen species-related diseases are critical.  相似文献   

16.
The aim of the study was to evaluate the effect of rosiglitazone treatment on islet ghrelin and insulin gene expressions in streptozotocin (STZ)-induced diabetic rats. Animals were divided into four groups. 1. Intact controls. 2. Rosiglitazone-treated controls. 3. STZ-induced diabetes. 4. Rosiglitazone-treated diabetes. Rosiglitazone was given for 7 days at a dose of 20 mg/kg body weight. Ghrelin and insulin gene expressions were investigated by immunohistochemistry and in situ hybridization. There was no statistically significant difference in body weight between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats during the experimental period. Furthermore, there were no significant differences in blood glucose levels and insulin immunoreactive cell numbers between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats. There was a tendency towards a reduction of ghrelin gene expression in diabetic animals compared with intact controls. We found, in addition, that ghrelin immunoreactive and ghrelin mRNA expressing cells were frequent in the epithelial lining of the ducts suggesting ductal epithelium might be the source of the regenerating islet ghrelin cells, as is known for other islet cells. The results show that short-term rosiglitazone pretreatment had no significant effect on ghrelin and insulin gene expressions.  相似文献   

17.
D-pinitol (3-O-methyl-chiroinositol), an active principle of the traditional antidiabetic plant, Bougainvillea spectabilis, is claimed to exert insulin-like effects. This study was undertaken to evaluate the effect of D-pinitol on lipids and lipoproteins in streptozotocin (STZ)-induced diabetic Wistar rats. Rats were made type II diabetic by single intraperitoneal injection of STZ at a dose of 40 mg/kg body weight. STZ-induced diabetic rats showed significant (p < 0.05) increase in the levels of blood glucose and total cholesterol, triglycerides, free fatty acids, and phospholipids in serum, liver, kidney, heart, and brain. The levels of low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) cholesterol were significantly increased, and the level of high-density lipoprotein (HDL) cholesterol was significantly decreased in diabetic rats Oral administration of D-pinitol to STZ-induced diabetic rats showed significant (p < 0.05) decrease in the levels of blood glucose and total cholesterol, triglycerides, free fatty acids, and phospholipids in serum, liver, kidney, heart, and brain. The D-pinitol also lowered significantly (p < 0.05) LDL and VLDL cholesterol levels and increased significantly (p < 0.05) HDL cholesterol levels in the serum of diabetic rats. Thus, the present study clearly showed the antihyperlipidemic effect of D-pinitol in STZ-induced type II diabetic rats.  相似文献   

18.
The present study was designed to examine the antihyperlipidaemic potential of iridoid glucoside isolated from Vitex negundo leaves in STZ-induced diabetic rats. The levels of cholesterol (TC), triglycerides, lipoproteins, free fatty acids, phospholipids, fatty acid composition, proinflammatory cytokines, muscle glycogen content, and glucose transporter 4 (GLUT4) expression were estimated in control and diabetic rats. Oral administration of iridoid glucoside at a dose of 50 mg/kg body weight per day to STZ-induced diabetic rats for a period of 30 days resulted in a significant reduction in plasma and tissue (liver and kidney) cholesterol, triglycerides, free fatty acids, and phospholipids. In addition, the decreased plasma levels of high-density lipoprotein-cholesterol and increased plasma levels of low density lipoprotein- and very low density lipoprotein-cholesterol in diabetic rats were restored to near normal levels following treatment with iridoid glucoside. The fatty acid composition of the liver and kidney was analyzed by gas chromatography. The altered fatty acid composition in the liver and kidney of diabetic rats was also restored upon treatment with iridoid glucoside. Moreover, the elevated plasma levels of proinflammatory cytokines and decreased levels of muscle glycogen and GLUT4 expression in the skeletal muscle of diabetic rats were reinstated to their normal levels via enhanced secretion of insulin from the remnant β cells of pancreas by the administration of iridoid glucoside. The effect produced by iridoid glucoside on various parameters was comparable with that of glibenclamide, a well-known antihyperglycemic drug.  相似文献   

19.
The objective of the present study is to observe the effect of Astragalus polysaccharide (APS) on myocardial glucose and lipid metabolism in diabetes (DM) hamster and to explore its mechanism in intervention of DM cardiomyopathy. Low-dose- streptozotocin-induced hamsters (STZ, 40 mg/kg × 3 days, i.p.) with blood glucose >13.9 mmo/L were considered as type 2 diabetic models. We measure blood glucose, serum lipid, insulin, C-peptide, myocardial enzyme levels, myocardial glycogen staining, myocardial ultrastructure, fluorescence quantitative RT-PCR detection of myocardial PPAR-α and the target genes (FATP, ACS) and GLUT4 mRNA expression in normal control group, DM group and APS treatment group hamsters. There was significant glycolipid metabolic disorders in DM group compared with normal group. Glucose, glycosylated serum protein, myocardial enzymes and lipid levels in APS treatment group decreased significantly than DM group, but insulin and C-peptide levels was no difference. Myocardial glycogen staining and abnormal myocardial ultrastructure in APS treatment group were significantly improved than in DM group. Gene expression of myocardial PPAR-α and its target genes (FATP, ACS) in APS group were significantly lower than in DM group, while gene expression of GLUT4 in APS group was higher than DM group. APS can partially improve myocardial glucose and lipid metabolism disorders in diabetic hamsters and protect myocardium in some extent.  相似文献   

20.
Type 2 diabetes mellitus (T2DM) is a chronic and one of the most common metabolic diseases affecting large proportion of world population. Diabetes-induced changes in lipid and renal parameters are major risk factors contributing to diabetic complications such as diabetic nephropathy and cardiovascular diseases. Due to adverse effects associated with pharmacological intervention in the T2DM treatment, there is an increased interest in the research focussing on identifying novel plant based therapeutic agents. Here we report the effects of various coconut products on diabetic, lipid and renal parameters in streptozotocin (STZ)-induced diabetic rat model. Diabetic rats demonstrated a significant increase in serum glucose, and glycated haemoglobin levels (HbA1c). Lipid parameters including triglycerides, total cholesterol, low density lipoprotein cholesterol (LDL-cholesterol) and very low density lipoprotein cholesterol (VLDL-cholesterol) were found to be significantly increased, while high density lipoprotein cholesterol (HDL-cholesterol) was significantly declined in diabetic rats. Diabetic rats also displayed increased serum and kidney creatinine, urea, and total protein levels and increased urine glucose, urea, albumin and creatinine levels. Contrastingly, treatment with virgin and filtered coconut oils, coconut water and coconut milk resulted in a significant reversal in the levels of above studied parameters in diabetic rats. Further, these coconut products markedly prevented diabetes induced histopathological changes in kidney tissue. Collectively, the data demonstrate the antidiabetic, hypolipidemic and renal protective properties of various coconut products and underscore the importance of regular consumption of plant based medicinal products in the treatment of T2DM and its complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号