首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in coho salmon (Oncorhynchus kisutch). The sex chromosome pair is morphologically similar to chinook salmon (Oncorhynchus tshawytscha) with the GH-Y localized to the small short arm of the largest subtelocentric chromosome pair. FISH experiments with probes containing sex-linked genes in rainbow trout (Oncorhynchus mykiss) (SCAR163) and chinook salmon (Omy7INRA) showed that the coho sex linkage group is different from chinook and rainbow trout and this was confirmed by segregation analysis for the Omy7INRA locus. The telomeric location of the SEX locus, the presence of shared male-specific markers in coho and chinook salmon, and the lack of conservation of sex-linkage groups suggest that transposition of a small male-specific region may have occurred repeatedly in salmonid fishes of the genus Oncorhynchus.  相似文献   

2.
Fluorescence in situ hybridization (FISH) was used to identify the X and Y chromosomes of offspring produced by normal and "apparent" XY-female fall-run Chinook salmon (Oncorhynchus tshawytscha) from California. FISH experiments were performed using probes to 2 sex-linked loci, growth hormone pseudogene (GH-Psi), and OtY1, as well as a probe to a sex-linked microsatellite (Omy7INRA). Comparison of FISH staining patterns between the offspring produced by normal and apparent XY-females revealed that the apparent XY-female examined transmitted a "Y-like" chromosome with an attenuated OtY1 and GH-Psi signal to half of its offspring. Segregation analysis of microsatellites derived from rainbow trout (Oncorhynchus mykiss) with respect to phenotypic sex was carried out for 2 normal and 2 apparent XY-female Chinook salmon families. Inheritance patterns of Omy7INRA were consistent with this locus being closely linked to GH-Psi in males and in apparent XY-females carrying the Y-like chromosome. Another microsatellite locus (Omm1077) was closely linked to the primary sex-determining locus (SEX) in males but not to GH-Psi/OtY1 in apparent XY-females. The FISH analyses suggest that apparent XY-female fall-run Chinook salmon in California are not the product of a Y chromosome to autosome translocation. Despite the combined FISH and inheritance analyses, we were unable to differentiate between 2 alternative explanations for apparent XY-females, namely, recombination of markers between the sex chromosomes, or a Y chromosome with a dysfunctional or missing sex-determining region.  相似文献   

3.
Iturra P  Lam N  de la Fuente M  Vergara N  Medrano JF 《Genetica》2001,111(1-3):125-131
With the aim of characterizing the sex chromosomes of rainbow trout (Oncorhynchus mykiss) and to identify the sex chromosomes of coho salmon (O. kisutch), we used molecular markers OmyP9, 5S rDNA, and a growth hormone gene fragment (GH2), as FISH probes. Metaphase chromosomes were obtained from lymphocyte cultures from farm specimens of rainbow trout and coho salmon. Rainbow trout sex marker OmyP9 hybridizes on the sex chromosomes of rainbow trout, while in coho salmon, fluorescent signals were localized in the medial region of the long arm of one subtelocentric chromosome pair. This hybridization pattern together with the hybridization of a GH2 intron probe on a chromosome pair having the same morphology, suggests that a subtelocentric pair could be the sex chromosomes in this species. We confirm that in rainbow trout, one of the two loci for 5S rDNA genes is on the X chromosome. In males of this species that lack a heteromorphic sex pair (XX males), the 5S rDNA probe hybridized to both subtelocentrics This finding is discussed in relation to the hypothesis of intraspecific polymorphism of sex chromosomes in rainbow trout.  相似文献   

4.
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus ( SEX ), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy - 163 marker, which maps close to SEX , was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.  相似文献   

5.
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.  相似文献   

6.
Construction of genetic linkage maps is an important first step for a variety of genomic applications, such as selective breeding in aquaculture, comparative studies of chromosomal evolution and identification of loci that have played key roles in the evolution of a species. Here we present a sex-specific linkage map for coho salmon. The map was constructed using 148 AFLP markers, 133 microsatellite loci and the phenotypic locus SEX . Twenty-four linkage groups spanning 287.4 cM were mapped in males, and 33 linkage groups spanning 429.7 cM were mapped in females. Several male linkage groups corresponded to two female linkage groups. The combination of linkage groups across both sexes appeared to characterize regions of 26 chromosomes. Two homeologous chromosomes were identified based on information from duplicated loci. Homologies between the coho and rainbow trout maps were examined. Eighty-six loci were found to form common linkage relationships between the two maps; these relationships provided evidence for whole-arm fissions, fusions and conservation of chromosomal regions in the evolution of these two species.  相似文献   

7.
NADH-methemoglobin reductase activity of erythrocytes from the coho salmon, Oncorhynchus kisutch, sockeye salmon, Oncorhynchus nerka, and the rainbow trout, Salmo gairdneri exhibited a major band of activity that resembled the human enzyme in electrophoretic mobility. No polymorphism was found in 35 samples from rainbow trout, 4 samples from Dolly Varden, 29 samples from sockeye salmon, and 24 samples from coho salmon. All samples differed from the human enzyme in that they appeared to be membrane-bound and required the presence of a detergent, Triton X-100, for solubilization. Rainbow trout and coho salmon enzymatic activity is greater than the human enzyme activity at 15 degrees C.  相似文献   

8.
Fluorescence in situ hybridization (FISH) using a probe to the male-specific GH-Y (growth hormone pseudogene) was used to identify the Y chromosome in the karyotypes of chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). The sex chromosome pair is a small acrocentric chromosome pair in chum salmon and the smallest metacentric chromosome pair in pink salmon. Both of these chromosome pairs are morphologically different from the sex chromosome pairs in chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch). The 5S rRNA genes are on multiple chromosome pairs including the sex chromosome pair in chum salmon, but at the centromeres of two autosomal metacentric pairs in pink salmon. The sex chromosome pairs and the chromosomal locations of the 5S rDNA appear to be different in all five of the North American Pacific salmon species and rainbow trout. The implications of these results for evolution of sex chromosomes in salmonids are discussed.  相似文献   

9.
1. Superoxide dismutase isolated from erythrocytes of several species of salmon and the rainbow trout exhibited single electrophoretic bands of activity which migrated anodally similar to the human erythrocyte enzyme; two discrete bands were observed for the coho salmon. 2. No polymorphism was observed for 30 samples from sockeye salmon and six samples from king salmon. Only one sample of rainbow trout (one of 12) exhibited an electrophoretic mobility difference. 3. Catalase migration on starch-gel resembled the human enzyme's electrophoretic mobility for all salmon species and rainbow trout. Catalase activity of the sockeye salmon (2929 +/- 895 mumol min-1 gHb-1) was determined to be lower than human catalase activity. 4. All samples differed from the human enzymes in that they required the presence of a detergent, Triton X-100, for solubilization.  相似文献   

10.
Five genetic markers previously shown to be located on the sex chromosomes of rainbow trout (Oncorhynchus mykiss) were tested for linkage with the sex locus of Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri) in a genetic cross created from a rainbow x cutthroat male hybrid. We show that the sex locus of both rainbow and cutthroat trout is on the same homologous linkage group. Fluorescence in situ hybridization (FISH) using a probe for the microsatellite marker Omm1665, which maps close to the sex locus of Yellowstone cutthroat trout, was used to identify the Y chromosome of cutthroat trout in the hybrid. The Y chromosome of cutthroat trout is sub-telocentric and lacks a DAPI band found on the short arm of the Y chromosome of some rainbow trout males.  相似文献   

11.
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.  相似文献   

12.
The genetic diversity of the resident and migratory forms of sockeye salmon is investigated in 14 populations from various water bodies of Kamchatka and the Commander Islands by ten loci of microsatellite DNA. There are considerable differences in the frequencies of alleles among the populations of kokanee from Lake Kronotskoe, the residual form of sockeye salmon from Lake Kopylie, and other populations analyzed. Clustering of samples corresponds to their geographic position. No differences in the frequencies of alleles of the investigated loci are found between two forms of resident sockeye salmon from Kronotskoe Lake. In the sockeye salmon from the Commander Islands, a relatively low genetic diversity is found, as well as the greatest remoteness from the other Kamchatka group.  相似文献   

13.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

14.
Genetic polymorphism of inorganic pyrophosphatase was investigated in 2799 individuals in four species of Pacific salmon: chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), kokanee (O. nerka), and steelhead (O. mykiss), using horizontal starch gel electrophoresis. This enzyme system appears to be an isolocus system with electrophoretically indistinguishable allozymes encoded by two loci (PP-1,2*) expressed in retinal tissue. Mendelian inheritance was observed with a breeding study in three family crosses. Population variability in four species was characterized in 44 populations from the U.S. Pacific coast. Three alleles were found in chinook salmon; two alleles each were found in coho salmon, kokanee, and steelhead. Chinook salmon and kokanee populations differed enough with respect to PP-1,2* frequencies that this isolocus is useful for genetic stock identification in these species.  相似文献   

15.
The purpose of this review is to provide a global perspective on Oncorhynchus salmonine introductions and put-and-take fisheries based on modern stocking programs, with special emphasis on freshwater ecosystems. We survey the global introductions of nine selected salmonines of the genus Oncorhynchus: golden trout, cutthroat trout, pink salmon, chum salmon, coho salmon, masu/cherry salmon, rainbow trout/steelhead, sockeye salmon/kokanee, and chinook salmon. The information is organized on a geographical basis by continent, and then by species and chronology. Two different objectives and associated definitions of ‘success’ for introductions are distinguished: (a) seed introduction: release of individuals with the purpose of creating a wild-reproducing, self-sustaining population; and (b) put-and-take introduction: release of individuals with the purpose of maintaining some level of wild population abundance, regardless of wild reproduction. We identify four major phenomena regarding global salmonine introductions: (1) general inadequacy of documentation regarding introductions; (2) a fundamental disconnect between management actions and ecological consequences of introductions; (3) the importance of global climate change on success of previous and future introductions; and (4) the significance of aquaculture as a key uncertainty in accidental introductions. We conclude this review with a recognition of the need to terminate ongoing stocking programs for introduced salmonines worldwide.  相似文献   

16.
Large-scale introductions of resident and anadromous salmonids from exogenous sources and urbanization have led to major changes in, and concern for the fate of, indigenous fish populations of the Lake Sammamish/Lake Washington Basin. Specifically, introductions of kokanee (the resident form of Oncorhynchus nerka) from the Lake Whatcom Hatchery and sockeye (the anadromous form of O. nerka) from Baker Lake have caused uncertainty about the ancestry of the kokanee that currently spawn in the basin. We used nine microsatellite loci to investigate the inter-relationships of kokanee populations that spawn in streams in the Sammamish sub-basin, sockeye salmon populations that share spawning areas with the kokanee, Lake Whatcom Hatchery kokanee and Baker Lake sockeye, and an outgroup, Meadow Creek kokanee, from Lake Kootenay which drains into the upper Columbia River. We observed high levels of genetic variation (5–49 alleles per locus). Explicit tests of population sub-division revealed that collections from most spawning aggregations differed from each other. Observed allele frequency distributions strongly suggest that natural spawning kokanee in the basin are not descended from recent Lake Whatcom stock introductions. We found no compelling evidence to suggest that the kokanee sampled from spawning areas within the Lake Sammamish sub-basin have resulted from, or been altered substantially by, past introductions of non-native kokanee or sockeye.  相似文献   

17.
We report on the construction of a linkage map for brown trout (Salmo trutta) and its comparison with those of other tetraploid-derivative fish in the family Salmonidae, including Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Arctic char (Salvelinus alpinus). Overall, we identified 37 linkage groups (2n = 80) from the analysis of 288 microsatellite polymorphisms, 13 allozyme markers, and phenotypic sex in four backcross families. Additionally, we used gene-centromere analysis to approximate the position of the centromere for 20 linkage groups and thus relate linkage arrangements to the physical morphology of chromosomes. Sex-specific maps derived from multiple parents were estimated to cover 346.4 and 912.5 cM of the male and female genomes, respectively. As previously observed in other salmonids, recombination rates showed large sex differences (average female-to-male ratio was 6.4), with male crossovers generally localized toward the distal end of linkage groups. Putative homeologous regions inherited from the salmonid tetraploid ancestor were identified for 10 pairs of linkage groups, including five chromosomes showing evidence of residual tetrasomy (pseudolinkage). Map alignments with orthologous regions in Atlantic salmon, rainbow trout, and Arctic char also revealed extensive conservation of syntenic blocks across species, which was generally consistent with chromosome divergence through Robertsonian translocations.  相似文献   

18.
Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout (Oncorhynchus mykiss). A family-based selection program to improve resistance was initiated in 2005 at the USDA National Center for Cool and Cold Water Aquaculture. Select crosses were made in 2007 and 2009 to evaluate family-based disease survival using Fp injection challenges. From each putative F2/BC1 family generated in 2009, 200–260 fish were challenged in 4–7 replicates per family. Whole genome QTL scans of three F2/BC1 families were conducted with about 270 informative microsatellite loci per family spaced at an average interval size of 6 cM throughout the rainbow trout genome. Markers on chromosomes containing QTL were further evaluated in three additional F2/BC1 families. The additional F2/BC1 families were sire or dam half-sibs (HS) of the initially genome scanned families. Overall, we identified nine major QTL on seven chromosomes that were significant or highly significant with moderate to large effects of at least 13 % of the total phenotypic variance. The largest effect QTL for BCWD resistance explaining up to 40 % of the phenotypic variance was detected on chromosome OMY8 in family 2009070 and in the combined dam HS family 2009069–070. The nine major QTL identified in this study are candidates for fine mapping to identify new markers that are tightly linked to disease resistance loci for using in marker assisted selection strategies.  相似文献   

19.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

20.
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号