首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations. The 50 bp profile contains a poly(A) tract in its centre and may have several gaps of unrelated sequences over a total length of up to 250 bp. The major exceptions to the correlation between CoHRs and preferred DSB sites are at telomeric regions, where DSBs do not occur. The CoHR sequence may provide the basis for understanding meiosis-induced chromatin changes that enable DSBs to occur at defined chromosomal sites.  相似文献   

2.
Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2 A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination.Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.  相似文献   

3.
Meiotic drive of chromosomal knobs reshaped the maize genome.   总被引:5,自引:0,他引:5  
Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome. Simulations were used to illustrate the dynamics of this meiotic drive model and suggest knobs might be deleterious in the absence of Ab10. Chromosomal knob data from maize's wild relatives (Zea mays ssp. parviglumis and mexicana) and phylogenetic comparisons demonstrated that the evolution of knob size, frequency, and chromosomal position agreed with the meiotic drive hypothesis. Knob chromosomal position was incompatible with the hypothesis that knob repetitive DNA is neutral or slightly deleterious to the genome. We also show that environmental factors and transposition may play a role in the evolution of knobs. Because knobs occur at multiple locations on all maize chromosomes, the combined effects of meiotic drive and genetic linkage may have reshaped genetic diversity throughout the maize genome in response to the presence of Ab10. Meiotic drive may be a major force of genome evolution, allowing revolutionary changes in genome structure and diversity over short evolutionary periods.  相似文献   

4.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes.Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination,homologous chromosome synapsis and reductional chromosome segregation to occur.In mammalian cells,DNA physically associates with histones to form chromatin,which can be modified by methylation,phosphorylation,ubiquitination and acetylation to help regulate higher order chromatin structure,gene expression,and chromosome organisation.Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells,and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase.This review will discuss the role of chromatin modifications in meiotic recombination,homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

5.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chro- mosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA phys- ically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

6.
Meiotic recombination is a driver of evolution, and aberrant recombination is a major contributor to aneuploidy in mammals. Mechanism of recombination remains elusive yet. Here, we present a computational analysis to explore recombination-related dynamics of chromatin accessibility in mouse primordial germ cells (PGCs). Our data reveals that: (1) recombination hotspots which get accessible at meiosis-specific DNase I-hypersensitive sites (DHSs) only when PGCs enter meiosis are located preferentially in intronic and distal intergenic regions; (2) stable DHSs maintained stably across PGC differentiation are enriched by CTCF motifs and CTCF binding and mediate chromatin loop formation; (3) compared with the specific DHSs aroused at meiotic stage, stable DHSs are largely encoded in DNA sequence and also enriched by epigenetic marks; (4) PRDM9 is likely to target nucleosome-occupied hotspot regions and remodels local chromatin structure to make them accessible for recombination machinery; and (5) cells undergoing meiotic recombination are deficient in TAD structure and chromatin loop arrays are organized regularly along the axis formed between homologous chromosomes. Taken together, by analyzing DHS-related DNA features, epigenetic marks and 3D genome structure, we revealed some specific roles of chromatin accessibility in recombination, which would expand our understanding of recombination mechanism.  相似文献   

7.
8.
9.
Meiotic recombination is initiated by a series of double-strand breaks (DSBs) in areas of the genome that generally contain promoters and feature an open chromatin configuration [T.D. Petes, Meiotic recombination hot spots and cold spots, Nat. Rev. Genet. 2 (2001) 360-369]. To investigate whether induced DSBs likewise lead to recombinational repair and whether the placement of new exchange events alters normal patterns of recombination, we used the chemotherapeutic drug cisplatin (CP) to generate additional DSBs throughout the mouse genome. Treatment with CP impaired spermatogenesis, as exhibited by reductions in sperm counts, reductions in both testicular size and weight, changes in the distribution of cells at various prophase I substages, prolonged increases in germ cell apoptosis, and an increased incidence of synaptic abnormalities. Unexpectedly, however, no obvious effect on genome-wide recombination levels in CP-treated animals was observed, nor was the level of aneuploidy increased in sperm from exposed males.  相似文献   

10.
Diploid germ cells produce haploid gametes through meiosis, a unique type of cell division. Independent reassortment of parental chromosomes and their recombination leads to ample genetic variability among the gametes. Importantly, new mutations also occur during meiosis, at frequencies much higher than during the mitotic cell cycles. These meiotic mutations are associated with genetic recombination and depend on double‐strand breaks (DSBs) that initiate crossing over. Indeed, sequence variation among related strains is greater around recombination hotspots than elsewhere in the genome, presumably resulting from recombination‐associated mutations. Significantly, enhanced mutagenicity in meiosis may lead to faster divergence during evolution, as germ‐line mutations are the ones that are transmitted to the progeny and thus have an evolutionary impact. The molecular basis for mutagenicity in meiosis may be related to the repair of meiotic DSBs by polymerases, or to the exposure of single‐strand DNA to mutagenic agents during its repair.  相似文献   

11.
The influence of meiotic mutations on the mutation changes in the double super-unstable system in the yellow and scute loci of Drosophila melanogaster was studied. The mei-41D5 and mei-218 mutations changed the spectrum and frequency of mutagenesis in males of the y2nsscme strain, in contrast to the postulate that meiotic mutations do not interfere with male recombination in D. melanogaster. These mutations also changed the frequency and spectrum of mutagenesis in females. In particular, they inhibited mutagenesis at early stages of ovogenesis. Meiotic conversion did not change specifically by mei mutations. At the same time, the mei-41D5 mutation increased all recombination processes in meiosis. The results obtained indicated the involvement of genetic recombination in mutation changes occurring in the double super-unstable system. Therefore, the latter may be successfully used in studies of the role of different genes and their products in recombination.  相似文献   

12.
Peciña A  Smith KN  Mézard C  Murakami H  Ohta K  Nicolas A 《Cell》2002,111(2):173-184
Meiotic recombination in Saccharomyces cerevisiae is initiated by programmed DNA double-strand breaks (DSBs), a process that requires the Spo11 protein. DSBs usually occur in intergenic regions that display open chromatin accessibility, but other determinants that control their frequencies and non-random chromosomal distribution remain obscure. We report that a Spo11 construct bearing the Gal4 DNA binding domain not only rescues spo11Delta spore inviability and catalyzes DSB formation at natural sites but also strongly stimulates DSB formation near Gal4 binding sites. At GAL2, a naturally DSB-cold locus, Gal4BD-Spo11 creates a recombinational hotspot that depends on all the other DSB gene functions, showing that the targeting of Spo11 to a specific site is sufficient to stimulate meiotic recombination that is under normal physiological control.  相似文献   

13.
Davis ES  Shafer BK  Strathern JN 《Genetics》2000,155(3):1019-1032
Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms.  相似文献   

14.
Meiotic recombination within the proximal region of the major histocompatibility complex (MHC) of the mouse is not random but occurs in clusters at certain restricted sites, so-called recombinational hotspots. The wm7 haplotype of the MHC, derived from the wild mouse, enhances recombination specifically during female meiosis within a fragment of 1.3 kb of DNA located between the A beta 3 and A beta 2 genes in genetic crosses with laboratory haplotypes. Previous studies revealed no significant strain differences in nucleotide sequences around the hotspot, irrespective of the ability of the strain to enhance the recombination. It appeared that a distant genetic element might, therefore, control the rate of recombination. In the present study, original recombinants whose breakpoints were defined by direct sequencing of PCR-amplified DNAs were tested for the rate of secondary recombination in the crosses with laboratory strains in order to determine the location of such a genetic element. The results clearly demonstrated that the chromosomal segment proximal to the hotspot is essential for enhancement of recombination. Moreover, the male recombination is suppressed by a segment distal to the hotspot.  相似文献   

15.
16.
17.
Meiotic recombination is sexually dimorphic in most mammalian species, including humans, but the basis for the male:female differences remains unclear. In the present study, we used cytological methodology to directly compare recombination levels between human males and females, and to examine possible sex-specific differences in upstream events of double-strand break (DSB) formation and synaptic initiation. Specifically, we utilized the DNA mismatch repair protein MLH1 as a marker of recombination events, the RecA homologue RAD51 as a surrogate for DSBs, and the synaptonemal complex proteins SYCP3 and/or SYCP1 to examine synapsis between homologs. Consistent with linkage studies, genome-wide recombination levels were higher in females than in males, and the placement of exchanges varied between the sexes. Subsequent analyses of DSBs and synaptic initiation sites indicated similar male:female differences, providing strong evidence that sex-specific differences in recombination rates are established at or before the formation of meiotic DSBs. We then asked whether these differences might be linked to variation in the organization of the meiotic axis and/or axis-associated DNA and, indeed, we observed striking male:female differences in synaptonemal complex (SC) length and DNA loop size. Taken together, our observations suggest that sex specific differences in recombination in humans may derive from chromatin differences established prior to the onset of the recombination pathway.  相似文献   

18.
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.  相似文献   

19.
20.
Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene--with correspondingly greater or fewer numbers of early recombination foci--exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号