共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Changes in protein methylation, citrullination, and phosphorylation during experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis, were evaluated using isobaric tags for relative and absolute quantification analysis of peptides produced from normal and diseased rat lumbar spinal cords. We observed alterations in the post-translational modification of key proteins regulating signal transduction and axonal integrity. Dephosphorylation of discrete serine residues within the neurofilament heavy subunit C-terminus was observed. We report for the first time elevated citrullination of Arg27 in glial fibrillary acidic protein, which may contribute to the pathophysiology of astrocytes. 相似文献
3.
T cell lines derived from the spinal cords of mice with experimental allergic encephalomyelitis are self reactive 总被引:5,自引:0,他引:5
D Sgroi R N Cohen E G Lingenheld M K Strong T Binder I Goldschneider D Greiner M Grunnet R B Clark 《Journal of immunology (Baltimore, Md. : 1950)》1986,137(6):1850-1854
Experimental allergic encephalomyelitis (EAE) is an animal model of T cell-mediated, central nervous system neuropathology that may be a relevant animal model for multiple sclerosis. EAE is usually induced by sensitization of animals with a xenogeneic myelin basic protein (MBP). Recently, MBP-reactive T cell lines and clones derived from lymphoid tissue of animals with EAE have proved very useful in elucidating certain aspects of the pathogenesis in EAE. However, questions relating to how T cells actually mediate the pathologic changes seen in EAE remain unresolved. We now report for the first time the derivation of long-term, interleukin 2-dependent T cell lines and sublines from a site of pathology in murine EAE--the spinal cord. All of the spinal cord-derived T cell lines and sublines were found to be "autoreactive" in that they responded to self (murine) MBP as well as to the xenogeneic immunogen, porcine MBP. The ability to derive T cell lines and sublines from the spinal cords of mice with EAE should now aid in the elucidation of pathogenetic mechanisms in EAE by allowing for a characterization of those T cells found at the site of pathology. 相似文献
4.
The CNS T cell repertoire was analyzed by RT-PCR, spectratyping, and nucleotide sequencing of the amplified products at different times following adoptive transfer of a CD4+, Th1, VB2+ encephalitogenic SJL/J proteolipid protein peptide 139-151-specific T cell clone. The third complementarity-determining region of TCR B chains in the spinal cord was used as an indicator of T cell heterogeneity. Spectratypic analysis revealed that a single peak corresponding to the third complementarity-determining region of the initiating T cell clone predominated during the acute phase. During recovery and relapse the complexity of the spectratype increased. DNA sequence analysis revealed that the donor clone predominated at the acute phase. By the first relapse the donor clone, although represented most frequently, was a minority of the total. Spectratypic analysis of the same samples for several other VB families revealed their presence during acute disease or relapses but, with the exception of VB17, their absence during the recovery stage. 相似文献
5.
目的:探讨实验性自身免疫性脑脊髓炎(EAE)的视神经损害以及将其作为视神经炎模型的可能性.方法:取MOG35-55多肽和完全弗氏佐剂制备成抗原乳剂免疫C57BL/6小鼠,并在腹腔内注射2次百日咳杆菌,建立EAE模型.在EAE疾病高峰时,观察小鼠视神经炎的发生率及病理学改变.结果:模型组12只小鼠中有10只从免疫后第12天开始陆续起病,约在第17~19天达到疾病高峰,发病率为83.3%;而对照组未出现任何神经功能受损的症状.HE染色结果显示模型组的视神经组织中有大量的炎症细胞浸润,动物视神经炎的发生率为83.3%,其炎症评分为2.1±0.8分,与对照组相比均有统计学意义.LFB染色可见模型组的视神经有明显的脱髓鞘改变,病灶内可见炎症细胞浸润;而对照组小鼠的视神经未见明显异常改变.结论:借助EAE建立视神经炎模型是可行的,这为深入探讨视神经炎的发病机制提供了理想的动物平台. 相似文献
6.
Experimental autoimmune encephalomyelitis (EAE) has been studied for decades as an animal model for human multiple sclerosis (MS). Here we performed ultrastructural analysis of corticospinal tract (CST) and motor neuron pathology in myelin oligodendrocyte glycoprotein (MOG) peptide 35-55- and MP4-induced EAE of C57BL/6 mice. Both models were clinically characterized by ascending paralysis. Our data show that CST and motor neuron pathology differentially contributed to the disease. In both MOG peptide- and MP4-induced EAE pathological changes in the CST were evident. While the MP4 model also encompassed severe motor neuron degeneration in terms of rough endoplasmic reticulum alterations, the presence of intracytoplasmic vacuoles and nuclear dissolution, both models showed motor neuron atrophy. Features of axonal damage covered mitochondrial swelling, a decrease in nearest neighbor neurofilament distance (NNND) and an increase of the oligodendroglial cytoplasm inner tongue. The extent of CST and motor neuron pathology was reflective of the severity of clinical EAE in MOG peptide- and MP4-elicited EAE. Differential targeting of CNS gray and white matter are typical features of MS pathology. The MOG peptide and MP4 model may thus be valuable tools for downstream studies of the mechanisms underlying these morphological disease correlates. 相似文献
7.
Matejuk A Vandenbark AA Burrows GG Bebo BF Offner H 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(7):3924-3931
The perivascular transmigration and accumulation of macrophages and T lymphocytes in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) may be partly regulated by low m.w. chemotactic cytokines. Using the RNase protection assay and ELISA, we quantified expression of chemokines and chemokine receptors in the spinal cord (SC), brain, and lymph nodes of BV8S2 transgenic mice that developed or were protected from EAE by vaccination with BV8S2 protein. In paralyzed control mice, the SC had increased cellular infiltration and strong expression of the chemokines RANTES, IFN-inducible 10-kDa protein, and monocyte chemoattractant protein-1 and the cognate chemokine receptors CCR1, CCR2, and CCR5, with lower expression of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2; whereas brain had less infiltration and a lower expression of a different pattern of chemokines and receptors. In TCR-protected mice, there was a decrease in the number of inflammatory cells in both SC and brain. In SC, the reduced cellular infiltrate afforded by TCR vaccination was commensurate with profoundly reduced expression of chemokines and their cognate chemokine receptors. In brain, however, TCR vaccination did not produce significant changes in chemokine expression but resulted in an increased expression of CCR3 and CCR4 usually associated with Th2 cells. In contrast to CNS, lymph nodes of protected mice had a significant increase in expression of MIP-2 and MIP-1beta but no change in expression of chemokine receptors. These results demonstrate that TCR vaccination results in selective reduction of inflammatory chemokines and chemokine receptors in SC, the target organ most affected during EAE. 相似文献
8.
We have recently shown that several carbonylated proteins, including glial fibrillary acidic protein, β-actin and β-tubulin, accumulate within cerebellar astrocytes during the chronic phase of myelin-oligodendrocyte glycoprotein (MOG)(35-55) peptide-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. As protein carbonyls cannot be repaired and there is less oxidative stress in chronic than in acute EAE, we hypothesized that the accumulation of carbonylated proteins in these animals may be due to a defect in the degradation of the modified proteins. Alternatively, oxidized proteins in chronic EAE mice may be more resistant to proteolysis. Using lipopolysaccharide-stimulated astrocytes and several protease inhibitors we identified the 20S proteasome as the proteolytic system responsible for the elimination of most oxidized proteins. We also discovered that the chymotrysin-like and caspase-like activities of the 20S proteasome are impaired in chronic EAE, while the amount of proteasome was unchanged. Proteasome failure in these animals was confirmed by the build-up of ubiquitinated proteins, mostly within astrocytes. In a cell-free system, carbonylated proteins from EAE mice with acute and chronic disease seem to be equally sensitive to proteasomal degradation. Altogether, the results support the notion that diminished activity of the 20S proteasome is a major contributor to the accumulation of carbonylated proteins in astrocytes of chronic EAE mice. 相似文献
9.
Farias AS Martins-de-Souza D Guimarães L Pradella F Moraes AS Facchini G Novello JC Santos LM 《Proteomics》2012,12(17):2656-2662
The induction of autoimmune encephalomyelitis (EAE) in Lewis rats results in a period of exacerbation followed by complete recovery. Therefore, this model is widely used for studying the evolution of multiple sclerosis. In the present investigation, differentially expressed proteins in the spinal cord of Lewis rats during the evolution of EAE were assessed using the combination of 2DE and MALDI-TOF MS. The majority of the differentially expressed proteins were identified during the acute phase of EAE, in relation to na?ve control animals. On the other hand, recovered rats presented a similar protein expression pattern in comparison with the na?ve ones. This observation can be explained, at least in part, by the intense catabolism existent in acute phase due to nervous tissue damage. In recovered rats, we have described the upregulation of proteins that are apparently involved in the recovery of damaged tissue, such as light and medium neurofilaments, glial fibrillary acidic protein, tubulins subunits, and quaking protein. These proteins are involved mainly in cell growth, myelination, and remyelination as well as in astrocyte and oligodendrocyte maturation. The present study has demonstrated that the inflammatory response, characterized by an increase of the proliferative response and infiltration of autoreactive T lymphocytes in the central nervous system, occurs simultaneously with neurodegeneration. 相似文献
10.
Reynolds ND Lukacs NW Long N Karpus WJ 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(5):2803-2813
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated inflammatory demyelinating disease of the CNS that serves as a model for multiple sclerosis. Notch receptor signaling in T lymphocytes has been shown to regulate thymic selection and peripheral differentiation. In the current study, we hypothesized that Notch ligand-receptor interaction affects EAE development by regulating encephalitogenic T cell trafficking. We demonstrate that CNS-infiltrating myeloid dendritic cells, macrophages, and resident microglia expressed Delta-like ligand 4 (DLL4) after EAE induction. Treatment of mice with a DLL4-specific blocking Ab significantly inhibited the development of clinical disease induced by active priming. Furthermore, the treatment resulted in decreased CNS accumulation of mononuclear cells in the CNS. Anti-DLL4 treatment did not significantly alter development of effector cytokine expression by Ag-specific T cells. In contrast, anti-DLL4 treatment reduced T cell mRNA and functional cell surface expression of the chemokine receptors CCR2 and CCR6. Adoptive transfer of Ag-specific T cells to mice treated with anti-DLL4 resulted in decreased clinical severity and diminished Ag-specific CD4(+) T cell accumulation in the CNS. These results suggest a role for DLL4 regulation of EAE pathogenesis through modulation of T cell chemokine receptor expression and migration to the CNS. 相似文献
11.
LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis 总被引:5,自引:0,他引:5
Mi S Hu B Hahm K Luo Y Kam Hui ES Yuan Q Wong WM Wang L Su H Chu TH Guo J Zhang W So KF Pepinsky B Shao Z Graff C Garber E Jung V Wu EX Wu W 《Nature medicine》2007,13(10):1228-1233
Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms to impede or slow disease progression. The identification of a means to enhance axon myelination would present new therapeutic approaches to inhibit and possibly reverse disease progression. Previously, LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) has been identified as an in vitro and in vivo negative regulator of oligodendrocyte differentiation and myelination. Here we show that loss of LINGO-1 function by Lingo1 gene knockout or by treatment with an antibody antagonist of LINGO-1 function leads to functional recovery from experimental autoimmune encephalomyelitis. This is reflected biologically by improved axonal integrity, as confirmed by magnetic resonance diffusion tensor imaging, and by newly formed myelin sheaths, as determined by electron microscopy. Antagonism of LINGO-1 or its pathway is therefore a promising approach for the treatment of demyelinating diseases of the CNS. 相似文献
12.
Mohit Raja Jain Shengjie Bian Tong Liu Jun Hu Stella Elkabes Hong Li 《Proteome science》2009,7(1):25-10
Background
Abnormal activation of protease activities during experimental autoimmune encephalomyelitis (EAE) in rats, a rodent model of multiple sclerosis, have been implicated in either the direct destruction of myelin components or the intracellular signal transduction pathways that lead to lymphocyte infiltration, oligodendrocyte destruction, neuronal dysfunctions and axonal degeneration. The identification of changes in regulated proteolytic events during EAE is crucial for uncovering activated proteases that may underline the pathological features such as inflammation and demyelination. We searched for either non-tryptic or semi-tryptic peptides from a previous shotgun proteomics study using isobaric tags for relative and absolute quantification (iTRAQ) to compare the proteomes of normal and EAE rat lumbar spinal cords. 相似文献13.
Ditamo Y Degano AL Maccio DR Pistoresi-Palencia MC Roth GA 《Immunology and cell biology》2005,83(1):75-82
A prominent feature of multiple sclerosis is its high incidence of onset in the third decade of life and its relatively rare onset in persons older than 50 years. In order to study age-related restriction of clinical expression, a comparative biochemical, immunological and histological study was undertaken during development of experimental autoimmune encephalomyelitis (EAE) in young (7 weeks) and middle-aged (15 months) Wistar rats. Young rats showed characteristic clinical signs 12-16 days postinduction, and then they spontaneously recuperated. In middle-aged rats, the incidence of clinical signs was significantly reduced, with a later onset of the disease. Similar biochemical and histological alterations were detected in both age groups, but they were present in a later stage in middle-aged animals. However, cellular and humoral immune responses to myelin basic protein (MBP) were observed 15 days postinduction in all EAE animals. The study of anti-MBP IgG isotype pattern in 7-week-old animals indicated a predominant Th1-type immune response during the acute stage of EAE, with antibodies predominantly recognizing the MBP 96-128 peptide. In contrast, 15-month-old animals showed a less prominent Th1 response, without any epitope dominance. The changes in immune function found in middle-aged animals may account for the different susceptibility and expression of EAE, and may also be relevant to the different clinical expression observed in multiple sclerosis with maturation. 相似文献
14.
Abolhassan Shahzadeh Fazeli Davood Nasrabadi Mohammad Hossein Sanati Alireza Pouya Saleh M. Ibrahim Hossein Baharvand Ghasem Hosseini Salekdeh 《Proteomics》2010,10(15):2822-2832
Multiple sclerosis is considered a prototype inflammatory autoimmune disorder of the CNS. Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein is one of the best‐characterized animal models of multiple sclerosis. Comprehensive understanding of gene expression in EAE can help identify genes that are important in drug response and pathogenesis. We applied a 2‐DE‐based proteomics approach to analyze the protein expression pattern of the brain in healthy and EAE samples. Of more than 1000 protein spots we analyzed, 70 showed reproducible and significant changes in EAE compared to controls. Of these, 42 protein spots could be identified using MALDI TOF‐TOF‐MS. They included mitochondrial and structural proteins as well as proteins involved in ionic and neurotransmitter release, blood barriers, apoptosis, and signal transduction. The possible role of these proteins in the responses of mice to animal models of multiple sclerosis is discussed. 相似文献
15.
Schneider A Araújo GW Trajkovic K Herrmann MM Merkler D Mandelkow EM Weissert R Simons M 《The Journal of biological chemistry》2004,279(53):55833-55839
Axonal damage is a major morphological correlate and cause of permanent neurological deficits in patients with multiple sclerosis (MS), a multifocal, inflammatory and demyelinating disease of the central nervous system. Hyperphosphorylation and pathological aggregation of microtubule-associated protein tau is a common feature of many neurodegenerative diseases with axonal degeneration including Alzheimer's disease. We have therefore analyzed tau phosphorylation, solubility and distribution in the brainstem of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Tau was hyperphosphorylated at several sites also phosphorylated in Alzheimer's disease and became partially detergent-insoluble in EAE brains. Morphological examination demonstrated accumulation of amorphous deposits of abnormally phosphorylated tau in the cell body and axons of neurons within demyelinating plaques. Hyperphosphorylation of tau was accompanied by up-regulation of p25, an activator of cyclin-dependent kinase 5. Phosphorylation of tau, activation of cdk5, and axonal pathology were significantly reduced when diseased rats were treated with prednisolone, a standard therapy of acute relapses in MS. Hyperphosphorylation of tau was not observed in a genetic or nutritional model of axonal degeneration or demyelination, suggesting that inflammation as detected in the brains of rats with EAE is the specific trigger of tau pathology. In summary, our data provide evidence that axonal damage in EAE and possibly MS is linked to tau pathology. 相似文献
16.
Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis 总被引:17,自引:0,他引:17
Hilliard B Wilmen A Seidel C Liu TS Göke R Chen Y 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(2):1314-1319
TRAIL, the TNF-related apoptosis-inducing ligand, induces apoptosis of tumor cells, but not normal cells; the roles of TRAIL in nontransformed tissues are unknown. Using a soluble TRAIL receptor, we examined the consequences of TRAIL blockade in an animal model of multiple sclerosis. We found that chronic TRAIL blockade in mice exacerbated experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. The exacerbation was evidenced primarily by increases in disease score and degree of inflammation in the CNS. Interestingly, the degree of apoptosis of inflammatory cells in the CNS was not affected by TRAIL blockade, suggesting that TRAIL may not regulate apoptosis of inflammatory cells in experimental autoimmune encephalomyelitis. By contrast, myelin oligodendrocyte glycoprotein-specific Th1 and Th2 cell responses were significantly enhanced in animals treated with the soluble TRAIL receptor. Based on these observations, we conclude that unlike TNF, which promotes autoimmune inflammation, TRAIL inhibits autoimmune encephalomyelitis and prevents activation of autoreactive T cells. 相似文献
17.
Baxter AG 《Nature reviews. Immunology》2007,7(11):904-912
Experimental autoimmune encephalomyelitis (EAE) is a model of the neuroimmune system responding to priming with central nervous system (CNS)-restricted antigens. It is an excellent model of post-vaccinal encephalitis and a useful model of many aspects of multiple sclerosis. EAE has been established in numerous species and is induced by priming with a large number of CNS-derived antigens. As a consequence, the pathogenesis, pathology and clinical signs vary significantly between experimental protocols. As I describe in this Timeline article, the reductionist approach taken in some lines of investigation of EAE resulted in a reliance on results obtained under a narrow range of conditions. Although such studies made important contributions to our molecular understanding of inflammation, T-cell activation, and MHC restriction, they did not advance as effectively our knowledge of the polyantigenic responses that usually occur in CNS immunopathology and autoimmunity. 相似文献
18.
Inaba Y Ichikawa M Koh CS Inoue A Itoh M Kyogashima M Komiyama A 《Cellular immunology》1999,198(2):96-102
The effect of dermatan sulfate (DS) on the treatment of Lewis rats with experimental autoimmune encephalomyelitis (EAE) was examined. DS, a sulfated glycosaminoglycan, has been reported to exhibit anticoagulant and fibrinolytic activities. DS treatment (50 mg/kg/day) facilitates recovery from the clinical manifestations of EAE. In this study, the fibrinolytic activity was higher in DS-treated rats than in saline-treated rats. Although the degree of perivascular mononuclear cell infiltration in the spinal cord was not suppressed in DS-treated rats compared to that in saline-treated rats, perivascular fibrin deposition was markedly suppressed in DS-treated rats. These findings suggest that DS would act as an effective therapeutic agent for EAE by preventing fibrin deposition. 相似文献
19.
J. William Lindsey 《Immunogenetics》1996,44(4):292-297
The factors which influence expression of autoimmune disease in the central nervous system are still poorly understood. We
determined the characteristics of experimental autoimmune encephalomyelitis (EAE) in twelve different inbred strains of mice
using either mouse spinal cord homogenate or synthetic peptides as the encephalitogen. We also determined whether these strains
were susceptible to reinduction of EAE at six weeks after the initial injection. The incidence, time of onset, severity, duration,
and number of spontaneous relapses varied widely among the different strains. Duration of initial EAE correlated significantly
with incidence of spontaneous relapses, and was greatest in C57L mice and in mice with a C57BL/10 background. Most strains
of mice recovered from initial EAE, but recovery was unusual in A.SW and PERA mice. Incidence of reinduced EAE differed from
incidence of initial EAE in some strains and did not correlate with incidence of spontaneous relapse. We conclude that the
same factors control disease duration and incidence of spontaneous relapse, and that these factors are independent of the
factors which control initial incidence. The factors controlling incidence of reinduced EAE are distinct from those controlling
spontaneous relapse, and may also differ from those controlling initial incidence. Further investigation of the mechanisms
effecting recovery from EAE and the genetic background underlying those mechanisms may help us understand human diseases such
as multiple sclerosis.
Received: 24 April 1996 / Revised: 26 May 1996 相似文献
20.
Dilip K. Challa Uta Bussmeyer Tarique Khan Héctor P. Montoyo Pankaj Bansal Raimund J. Ober E Sally Ward 《MABS-AUSTIN》2013,5(5):655-659
Much data support a role for central nervous system antigen-specific antibodies in the pathogenesis of multiple sclerosis (MS). The effects of inducing a decrease in (auto)antibody levels on MS or experimental autoimmune encephalomyelitis (EAE) through specific blockade of FcRn, however, remain unexplored. We recently developed engineered antibodies that lower endogenous IgG levels by competing for binding to FcRn. These Abdegs (“antibodies that enhance IgG degradation”) can be used to directly assess the effect of decreased antibody levels in inflammatory diseases. In the current study, we show that Abdeg delivery ameliorates disease in an EAE model that is antibody dependent. Abdegs could therefore have promise as therapeutic agents for MS. 相似文献