共查询到20条相似文献,搜索用时 17 毫秒
1.
Molecular morphologies and conformation transition of lentinan, a beta-(1-->3)-D-glucan from Lentinus edodes, were studied in aqueous NaOH solution by atomic force microscopy (AFM), viscometry, multiangle laser light scattering, and optical rotation measurements. The results revealed that lentinan exists as triple-helical chains and as single random-coil chains at NaOH concentration lower than 0.05M and higher than 0.08M, respectively. Moreover, the dramatic changes in weight-average molecular weight Mw, radius of gyration [s2](1/2), intrinsic viscosity [eta], as well as specific optical rotation at 589 nm [alpha]589 occurred in a narrow range of NaOH concentration between 0.05 and 0.08M NaOH, indicating that the helix-coil conformation transition of lentinan was carried out more easily than that of native schizophyllan and scleroglucan, and was irreversible. For the first time, we confirmed that the denatured lentinan molecule, which was dissolved in 0.15M NaOH to be disrupted into single coil chains, could be renatured as triple helical chain by dialyzing against abundant water in the regenerated cellulose tube at ambient temperature (15 degrees C). In view of the AFM image, lentinan in aqueous solution exhibited the linear, circular, and branched species of triple helix compared with native linear schizophyllan or scleroglucan. 相似文献
2.
Zong‐Jin Han Sangkee Rhee Keliang Liu H. Todd Miles David R. Davies 《Acta Crystallographica. Section D, Structural Biology》2000,56(1):104-105
Single crystals of d(CTCCTSCCGCGCG)·d(CGCGCGGAG) have been grown by the vapor‐diffusion method using 2‐methyl‐2,4‐pentanediol as a precipitant. The crystals are tetragonal, space group P42, with unit‐cell parameters a = b = 53.8, c = 43.1 Å, and diffract to 1.8 Å resolution at a synchrotron X‐ray beamline. In the crystal, the asymmetric unit contains one copy of the construct. The two halves of the structure are related by non‐crystallographic twofold symmetry. These observations are consistent with the conclusion that the sequences of the 12‐mer and 9‐mer oligonucleotides form a duplex DNA at one end and a triplex DNA at the other end. 相似文献
3.
Y. O. Kamatari T. Konno M. Kataoka K. Akasaka 《Protein science : a publication of the Protein Society》1998,7(3):681-688
Methanol-induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far- and near-UV CD and NMR spectroscopies, ANS binding and small-angle X-ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far- and near-UV CD spectroscopy, by isodichroic points in the far- and near-UV CD spectra and by the concomitant disappearance of individual 1H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far-UV CD spectroscopy, and had no specific tertiary structure, monitored both by near-UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 angstroms, was significantly larger than that in the native state (15.7 angstroms). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea-denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod-like conformation which is clearly distinguishable from the \"molten globule\" state. The stability of both N and H states depends on pH and methanol concentration. Thus a phase diagram involving N and H was constructed. 相似文献
4.
Kamihira M Naito A Tuzi S Nosaka AY Saitô H 《Protein science : a publication of the Protein Society》2000,9(5):867-877
Conformational transitions of human calcitonin (hCT) during fibril formation in the acidic and neutral conditions were investigated by high-resolution solid-state 13C NMR spectroscopy. In aqueous acetic acid solution (pH 3.3), a local alpha-helical form is present around Gly10 whereas a random coil form is dominant as viewed from Phe22, Ala26, and Ala31 in the monomer form on the basis of the 13C chemical shifts. On the other hand, a local beta-sheet form as viewed from Gly10 and Phe22, and both beta-sheet and random coil as viewed from Ala26 and Ala31 were detected in the fibril at pH 3.3. The results indicate that conformational transitions from alpha-helix to beta-sheet, and from random coil to beta-sheet forms occurred in the central and C-terminus regions, respectively, during the fibril formation. The increased 13C resonance intensities of fibrils after a certain delay time suggests that the fibrillation can be explained by a two-step reaction mechanism in which the first step is a homogeneous association to form a nucleus, and the second step is an autocatalytic heterogeneous fibrillation. In contrast to the fibril at pH 3.3, the fibril at pH 7.5 formed a local beta-sheet conformation at the central region and exhibited a random coil at the C-terminus region. Not only a hydrophobic interaction among the amphiphilic alpha-helices, but also an electrostatic interaction between charged side chains can play an important role for the fibril formation at pH 7.5 and 3.3 acting as electrostatically favorable and unfavorable interactions, respectively. These results suggest that hCT fibrils are formed by stacking antiparallel beta-sheets at pH 7.5 and a mixture of antiparallel and parallel beta-sheets at pH 3.3. 相似文献
5.
The present study investigated the effect of temperature and lipid/peptide molar ratio on the conformational changes of the membrane peptide gramicidin A from a double-stranded helix to a single-stranded helical dimmer in 1,2-dimyristoyl-glycerol-3-phosphochloine (DMPC) vesicles. Tryptophan fluorescence spectroscopy results suggested that the conformational transition fitted a three-state (two-step) \"folding\" model. Rate constants, k(1) and k(2), were determined for each of the two steps. Since k(1) and k(2) increased with an increase in temperature, we hypothesized that the process corresponded to the breakage and formation of the backbone hydrogen bonds. The k(1) was from 10 to 45 folds faster than k(2), except for lipid/peptide molar ratios above 89.21, where k(2) increased rapidly. At molar ratios below 89.21, k(2) was insensitive to changes in lipid concentration. To account for this phenomenon, we proposed that while the driving interaction at high molar ratios is between the indole rings of the tryptophan residues and the lipid head groups, at low molar ratios there may be an intermolecular interaction between the tryptophan residues that causes gramicidin A to form an organized aggregated network. This aggregated network, caused by the tryptophan-tryptophan interaction, may be the main effect responsible for the slow down of the conformation change. 相似文献
6.
Kamatari YO Ohji S Konno T Seki Y Soda K Kataoka M Akasaka K 《Protein science : a publication of the Protein Society》1999,8(4):873-882
We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state. 相似文献
7.
The conformational properties of κ‐carrageenan in 0.2M LiI and ι‐carrageenan in 0.2M LiCl were analyzed by size exclusion chromatography combined with low‐angle laser light scattering. Fractionated samples with narrow molecular weight distributions (Mw/Mn ∼ 1.4) were used, and Mw in the disordered states were 35,000 (κ‐35) and 200,000 (κ‐200) for κ‐carrageenan and 65,000 (ι‐65) and 170,000 (ι‐170) for ι‐carrageenan, respectively. The analyses were performed across a temperature range where the conformational transitions occurred, and at extremely low concentrations (2–50 μg/mL) due to low amounts of samples injected and the subsequent dilution occurring during the separation. The results indicate that a twofold increase of the molecular weight (Mw) occurs for κ‐carrageenan upon inducing the ordered conformation. For ι‐carrageenan an additional increase in Mw may take place, which is attributed to the strong tendency for aggregation of ordered chains especially at high molecular weights. The results thus suggest that both κ‐ and ι‐carrageenan are double (or multiple) stranded in their ordered conformations, within the concentration range studied here. © 1999 John Wiley & Sons, Inc. Biopoly 49: 71–80, 1999 相似文献
8.
Curious low-temperature solubility of cellulose triacetates (CTA; here we use nominally \"CTA,\" but the sample still contains 7% of C-6 position hydroxyls) in an organic solvent, methyl acetate (MA), was studied by a newly designed low-temperature type of DLS apparatus, which enabled for the first time to investigate the structural change of CTA in solution from 45 degrees C down to -100 degrees C. A molecularly dissolved CTA was found to coexist with three types of self-assemblies over all the temperature ranges except for the three specific temperatures T* of 30, -10, and -75 degrees C. However, these multiple self-assemblies are not in real thermodynamic equilibrium but in a metastable state, which could be stabilized effectively by the intermolecular hydrogen bonding (HB) with the help of the dipole interaction at low temperatures. In more detail, with decreasing temperature, these assemblies performed the structural reorganization drastically at three T*'s and would finally be frozen in a physical gel structure at -99 degrees C; around the freezing temperature of MA, CTA molecules could be trapped homogeneously in the frozen MA. The crucial role in such structural reorganizations is played by the balance between the intermolecular HB and the dipole interaction worked in the highly electronegative solvent. Because these interactions, which are mediated by the solvent electronegativity, change drastically with temperature, they result in the control of not only the single CTA chain conformation (= the intramolecular HB) but also the binding ways of the intermolecular HBs between CTA molecules and they induce multitudinous metastable structures in solution. Here it is noted that HB could work mainly between the C-6 position hydroxyls in the anhydroglucose units of CTA and are essentially effective at low temperatures. 相似文献
9.
A recently published method for the determination of the enthalpy and entropy changes of nonionic origin upon conformational transition of linear biopolyelectrolytes in solution [J. C. Benegas, A. Cesàro, R. Rizzo and S. Paoletti (1998) Biopolymers, Vol. 45, pp. 203–216] has been extended from the case of aqueous salt solutions to that of the organic solvent formamide (FA). The calculation have been applied to the case of the intramolecular transition of the K+ salt form of the sulfated polysaccharide κ‐carrageenan. The method proved to be effective in providing the desired data in FA, as it has been previously been successful for the water cases. The comparison between the predicted enthalpy change of transition and the microcalorimetric experimental one turned out to be excellent, thereby ensuring on the validity of the approach. © 1999 John Wiley & Sons, Inc. Biopoly 49: 127–130, 1999 相似文献
10.
Development of artificial collagens to replace the animal‐derived collagens presents a challenge in the formation of safer and functional biomaterials. We report here the development of collagen‐like gels by means of the self‐assembly of chemically synthesized peptides. The peptides are disulfide‐linked trimers of collagenous Gly‐X‐Y triplet repeats with self‐complementary shapes. Upon cooling the peptide solutions, hydrogels of peptide supramolecules are formed by spontaneous intermolecular triple helix formation. The thermal gel–sol transition appeared to be reversible, and the transition temperatures were found to be tunable by the design of the peptides. Our systems for the formation of artificial collagen‐like gels will offer possibilities for novel types of biomaterials. © 2008 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 90: 816–823, 2008. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
11.
G‐Protein Coupled Receptors (GPCRs) play a critical role in cellular signal transduction pathways and are prominent therapeutic targets. Recently there has been major progress in obtaining experimental structures for a few GPCRs. Each GPCR, however, exhibits multiple conformations that play a role in their function and we have been developing methods aimed at predicting structures for all these conformations. Analysis of available structures shows that these conformations differ in relative helix tilts and rotations. The essential issue is, determining how to orient each of the seven helices about its axis since this determines how it interacts with the other six helices. Considering all possible helix rotations to ensure that no important packings are overlooked, and using rotation angle increments of 30° about the helical axis would still lead to 127 or 35 million possible conformations each with optimal residue positions. We show in this paper how to accomplish this. The fundamental idea is to optimize the interactions between each pair of contacting helices while ignoring the other 5 and then to estimate the energies of all 35 million combinations using these pair‐wise interactions. This BiHelix approach dramatically reduces the effort to examine the complete set of conformations and correctly identifies the crystal packing for the experimental structures plus other near‐native packings we believe may play an important role in activation. This approach also enables a detailed structural analysis of functionally distinct conformations using helix‐helix interaction energy landscapes and should be useful for other helical transmembrane proteins as well. Proteins 2012. © 2011 Wiley Periodicals, Inc. 相似文献
12.
The molecular conformation of oligo‐proline peptides composed of two oligo‐proline block sequences and a non‐proline linker residue, designated as (Pro) m‐Gly/Ala‐(Pro) n peptides, was analyzed by circular dichroism (CD) spectroscopy. The CD spectra in water and trifluoroethanol indicated that the two oligo‐proline blocks were separated by an inserted residue independent of polyproline‐II (PP‐II). In addition, the stability of the (Pro) m‐Gly/Ala‐(Pro) n peptides was analyzed using a conformational transition system, during transition from PP‐II to polyproline‐I (PP‐I) in aliphatic alcohols, methanol (MeOH), and 1‐propanol (1‐PrOH). Interestingly, the PP‐II/PP‐I transition was inhibited after a Gly/Ala was inserted at the center of the oligo‐proline; the inhibitory effect of Ala was stronger than that of Gly. When the position of the inserted Ala moved towards the C‐terminal, the (Pro) m‐Gly/Ala‐(Pro) n peptides displayed a PP‐II/PP‐I transition in 1‐PrOH. Our results confirmed that (Pro) m‐Gly/Ala‐(Pro) n peptides prefer to form PP‐II hairpin conformations even in MeOH and 1‐PrOH. Thus, our findings suggest that the insertion of Gly/Ala acts as a stabilizer in PP‐II in proline‐rich peptides. 相似文献
13.
Anna M. Knapinska Dorota Tokmina‐Roszyk Sabrina Amar Michal Tokmina‐Roszyk Vadym N. Mochalin Yury Gogotsi Patrick Cosme Andrew C. Terentis Gregg B. Fields 《Peptide Science》2015,104(3):186-195
Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND–biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid‐phase conjugation of ND to peptides and characterization of ND–peptide conjugates. Utilizing collagen‐derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 186–195, 2015. 相似文献
14.
Zhi‐Dong Lv Bin Kong Xiang‐Ping Liu Li‐Ying Jin Qian Dong Fu‐Nian Li Hai‐Bo Wang 《Journal of cellular and molecular medicine》2016,20(5):864-873
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression. 相似文献
15.
Annalisa Pastore Severo Salvadori Piero Andrea Temussi 《Journal of peptide science》2007,13(5):342-347
Confinement of proteins and peptides in a small inert space mimics the natural environment of the cell, allowing structural studies in conditions that stabilize folded conformations. We have previously shown that confinement in polyacrylamide gels (PAGs) is sufficient to induce a change in the viscosity of the aqueous solution without changing the composition and temperature of the solvent. The main limitation of a PAG to run NMR experiments in a confined environment is the need for labelling the peptides. Here we report the use of the agarose gel to run the NMR spectra of proteins and peptides. We show that agarose gels are completely transparent in NMR experiments, relieving the need for labelling. Although it is necessary to expose biomolecules to fairly high temperatures during sample preparation, we believe that this is not generally an obstacle to the study of peptides, and found that the method is also compatible with temperature-resistant proteins. The mesh of agarose gels is too wide for direct effects of confinement on the stability of proteins but confinement can be easily exploited to interact the proteins with other reagents, including crowding macromolecules that can eventually lead to fold stabilization. The use of these gels is ideally suited for low-temperature studies; we show that a very flexible peptide at subzero temperatures is stabilized into a well-folded conformation. 相似文献
16.
Konkallu H. Gowd Maren Watkins Vernon D. Twede Grzegorz W. Bulaj Baldomero M. Olivera 《Journal of peptide science》2010,16(8):375-382
A multidisciplinary strategy for discovery of new Conus venom peptides combines molecular genetics and phylogenetics with peptide chemistry and neuropharmacology. Here we describe application of this approach to the conantokin family of conopeptides targeting NMDA receptors. A new conantokin from Conus rolani, ConRl‐A, was identified using molecular phylogeny and subsequently synthesized and functionally characterized. ConRl‐A is a 24‐residue peptide containing three γ‐carboxyglutamic acid residues with a number of unique sequence features compared to conantokins previously characterized. The HPLC elution of ConRl‐A suggested that this peptide exists as two distinct, slowly exchanging conformers. ConRl‐A is predominantly helical (estimated helicity of 50%), both in the presence and absence of Ca++. The order of potency for blocking the four NMDA receptor subtypes by ConRl‐A was NR2B > NR2D > NR2A > NR2C. This peptide has a greater discrimination between NR2B and NR2C than any other ligand reported so far. In summary, ConRl‐A is a new member of the conantokin family that expands our understanding of structure/function of this group of peptidic ligands targeted to NMDA receptors. Thus, incorporating phylogeny in the discovery of novel ligands for the given family of ion channels or receptors is an efficient means of exploring the megadiverse group of peptides from the genus Conus. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
17.
Barthe P Rochette S Vita C Roumestand C 《Protein science : a publication of the Protein Society》2000,9(5):942-955
Helical coiled-coils and bundles are some of the most common structural motifs found in proteins. Design and synthesis of alpha-helical motifs may provide interesting scaffolds that can be useful as host structures to display functional sites, thus allowing the engineering of novel functional miniproteins. We have synthesized a 38-amino acid peptide, alpha2p8, encompassing the alpha-helical hairpin present in the structure of p8MTCP1, as an alpha-helical scaffold particularly promising for its stability and permissiveness of sequence mutations. The three-dimensional structure of this peptide has been solved using homonuclear two-dimensional NMR techniques at 600 MHz. After sequence specific assignment, a total of 285 distance and 29 dihedral restraints were collected. The solution structure of alpha2p8 is presented as a set of 30 DIANA structures, further refined by restrained molecular dynamics, using simulated annealing protocol with the AMBER force field. The RMSD values for the backbone and all heavy atoms are 0.65+/-0.25 and 1.51+/-0.21 A, respectively. Excised from its protein context, the alpha-hairpin keeps its native structure: an alpha-helical coiled-coil, similar to that found in superhelical structures, with two helices spanning residues 4-16 and 25-36, and linked by a short loop. This motif is stabilized by two interhelical disulfide bridges and several hydrophobic interactions at the helix interface, leaving most of its solvent-exposed surface available for mutation. This alpha-helical hairpin, easily amenable to synthetic chemistry and biological expression system, may represent a stable and versatile scaffold to display new functional sites and peptide libraries. 相似文献
18.
This study focuses on the phenomenon of kinetic partitioning when a polypeptide chain has two ground-state conformations, one of which is kinetically more reachable than the other. We designed sequences for lattice model proteins with two different conformations of equal energy corresponding to the global energy minimum. Folding simulations revealed that one of these conformations was indeed much more kinetically accessible than the other. We found that the number and strength of local contacts in the ground-state conformation are the major factors that determine which conformation is reached faster; the greater the number of local contacts, the more kinetically reachable a conformation is. We present simple statistical–mechanical arguments to explain these findings. Our results may be relevant in explaining the phenomenology of such proteins as human plasminogen activator inhibitor-1 (PAI-1), photosystem II, and prions. Proteins 31:335–344, 1998. © 1998 Wiley-Liss, Inc. 相似文献
19.
Dimerization of two genomic RNA copies is essential for the assembly of retrovirus particles. This process has been studied in detail, and a two-step mechanism has been proposed for the human immunodeficiency virus type 1 (HIV-1). A similar model can be assumed for avian sarcoma and leukosis viruses (ASLV), despite the lack of homology between the dimerization initiation site (DIS) of ASLV and that of HIV-1. The structural features of the ASLV DIS were studied with the examples of the avian leukosis virus HPRS-103 and the avian sarcoma virus CT-10. The rate of spontaneous transition from loose to tight dimers at a higher temperature was studied as dependent on the stem length in the DIS hairpin. Dimers of both types were formed by the selected RNA fragments of the two viruses. The conditions of loose dimer formation differed considerably, although the two viruses had identical sequences (5-A-CUGCAG-3) of the hairpin loop. Dimerization of CT-10 RNA fragments required an RNA concentration at least an order of magnitude higher than in the case of HPRS-103. The difference was explained by deletion of an adenine from the hairpin stem of C-10.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 147–154.Original Russian Text Copyright © 2005 by Beniaminov, Samokhin, Ulyanov, Minyat. 相似文献
20.
George M. Giamba?u Tai-Sung Lee Carlos P. Sosa Michael P. Robertson William G. Scott Darrin M. York 《RNA (New York, N.Y.)》2010,16(4):769-780
The L1 ligase is an in vitro selected ribozyme that uses a noncanonically base-paired ligation site to catalyze regioselectively and regiospecifically the 5′ to 3′ phosphodiester bond ligation, a reaction relevant to origin of life hypotheses that invoke an RNA world scenario. The L1 ligase crystal structure revealed two different conformational states that were proposed to represent the active and inactive forms. It remains an open question as to what degree these two conformers persist as stable conformational intermediates in solution, and along what pathway are they able to interconvert. To explore these questions, we have performed a series of molecular dynamics simulations in explicit solvent of the inactive–active conformational switch in L1 ligase. Four simulations were performed departing from both conformers in both the reactant and product states, in addition to a simulation where local unfolding in the active state was induced. From these simulations, along with crystallographic data, a set of four virtual torsion angles that span two evolutionarily conserved and restricted regions were identified as dynamical hinge points in the conformational switch transition. The ligation site visits three distinct states characterized by hydrogen bond patterns that are correlated with the formation of specific contacts that may promote catalysis. The insights gained from these simulations contribute to a more detailed understanding of the coupled catalytic/conformational switch mechanism of L1 ligase that may facilitate the design and engineering of new catalytic riboswitches. 相似文献