首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang X  Zhang L  Xu X 《Biopolymers》2004,75(2):187-195
Molecular morphologies and conformation transition of lentinan, a beta-(1-->3)-D-glucan from Lentinus edodes, were studied in aqueous NaOH solution by atomic force microscopy (AFM), viscometry, multiangle laser light scattering, and optical rotation measurements. The results revealed that lentinan exists as triple-helical chains and as single random-coil chains at NaOH concentration lower than 0.05M and higher than 0.08M, respectively. Moreover, the dramatic changes in weight-average molecular weight Mw, radius of gyration [s2](1/2), intrinsic viscosity [eta], as well as specific optical rotation at 589 nm [alpha]589 occurred in a narrow range of NaOH concentration between 0.05 and 0.08M NaOH, indicating that the helix-coil conformation transition of lentinan was carried out more easily than that of native schizophyllan and scleroglucan, and was irreversible. For the first time, we confirmed that the denatured lentinan molecule, which was dissolved in 0.15M NaOH to be disrupted into single coil chains, could be renatured as triple helical chain by dialyzing against abundant water in the regenerated cellulose tube at ambient temperature (15 degrees C). In view of the AFM image, lentinan in aqueous solution exhibited the linear, circular, and branched species of triple helix compared with native linear schizophyllan or scleroglucan.  相似文献   

2.
Methanol-induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far- and near-UV CD and NMR spectroscopies, ANS binding and small-angle X-ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far- and near-UV CD spectroscopy, by isodichroic points in the far- and near-UV CD spectra and by the concomitant disappearance of individual 1H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far-UV CD spectroscopy, and had no specific tertiary structure, monitored both by near-UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 angstroms, was significantly larger than that in the native state (15.7 angstroms). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea-denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod-like conformation which is clearly distinguishable from the "molten globule" state. The stability of both N and H states depends on pH and methanol concentration. Thus a phase diagram involving N and H was constructed.  相似文献   

3.
Wang X  Zhang X  Xu X  Zhang L 《Biopolymers》2012,97(10):840-845
Lentinan (β‐(1→3)‐D ‐glucan) was found to be successfully fractionated by the mixture of dimethyl sulfoxide (DMSO) and lithium chloride (LiCl) as a solvent and acetone as a precipitant. Light scattering and viscosity measurements were made on solutions of fractionated samples in pure DMSO and 0.2M LiCl/DMSO in the range of the molecular weight Mw from 21.7 × 104 to 84.7 × 104. The values of Mw in both solvents were almost the same, but the remarkable difference between the values of intrinsic viscosity [η] demonstrated that the LiCl/DMSO solvent greatly enhances the stiffness of the lentinan backbone. The observed intrinsic viscosity [η] was analyzed by the Yoshizaki‐Nitta‐Yamakawa theory of a worm‐like chain, and the persistence length q and molecular weight per unit contour length ML were determined roughly as 6.0 nm and 890 g nm?1 in 0.2M LiCl/DMSO, and 5.1 nm and 890 g nm?1 in pure DMSO, respectively. This slightly larger persistent length in 0.2M LiCl/DMSO also confirmed the higher stiffness of lentinan enhanced by the LiCl/DMSO solvent. The enhancement of the chain stiffness was ascribed to the electrostatic repulsion because of the hydrogen bonding of the hydroxyl protons of lentinan with the chloride ion, which is in turn associated with the Li+(DMSO)n macrocation complex. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 840–845, 2012.  相似文献   

4.
Single crystal structures of host-guest peptides, (Pro-Hyp-Gly)(4)-Leu-Hyp-Gly-(Pro-Hyp-Gly)(5) (LOG1) and (Pro-Hyp-Gly)(4)- (Leu-Hyp-Gly)(2)-(Pro-Hyp-Gly)(4) (LOG2), have been determined at 1.6 A and 1.4 A resolution, respectively. In these crystals, the side chain conformations of the Leu residues were (+)gauche-trans. This conformational preference for the Leu side chain in the Leu-Hyp-Gly sequence was explained by stereochemical considerations together with statistical analysis of Protein Data Bank data. In the (+)gauche-trans conformation, the Leu side chain can protrude along the radial direction of the rod-like triple-helical molecule. One strong hydrophobic interaction of the Leu residue was observed between adjacent molecules in the LOG2 crystal. Because the Leu-Hyp-Gly sequence is one of the most frequently occurring triplets in Type I collagen, this strong hydrophobic interaction can be expected in a fibrillar structure of native collagen. All the Leu residues in the asymmetric unit of the LOG1 and LOG2 crystals had water molecules hydrogen bonded to their NH. These water molecules made three additional hydrogen bonds with the Hyp OH, the Gly O[double bond]C, and a water molecule in the second hydration shell, forming a tetrahedral coordination of hydrogen bonds, which allows a smaller mean-square displacement factor of this water oxygen atom than those of other water molecules. These hydrogen bonds stabilize the molecular and packing structures by forming one O[double bond]C(Gly)---W---OH(Hyp) intra-molecular linkage and two NH(Leu)---W---O[double bond]C(Gly) and NH(Leu)---W---OH(Hyp) inter-molecular linkages.  相似文献   

5.
Gel electrophoresis in studies of protein conformation and folding   总被引:10,自引:0,他引:10  
Electrophoresis through polyacrylamide gels is a useful method for distinguishing conformational states of proteins and analyzing the thermodynamic and kinetic properties of transitions between conformations. Although the relationship between protein conformation and electrophoretic mobility is quite complex, relative mobilities provide qualitative estimates of compactness. Conformational states which interconvert slowly on the time scale of the electrophoretic separation can often be resolved, and the rates of interconversion can be estimated. If the transitions are more rapid, then the electrophoretic mobility represents the equilibrium distribution of conformations. Protein unfolding transitions induced by urea are readily studied using slab gels containing a gradient of urea concentration perpendicular to the direction of electrophoresis. Protein applied across the top of such a gel migrates in the presence of continuously varying urea concentrations, and a profile of the unfolding transition is generated directly. Transitions induced by other agents could be studied using analogous gradient gels. Electrophoretic methods are especially suited for studying small quantities of protein, and complex mixtures, since the different components can be separated during the electrophoresis.  相似文献   

6.
Eight samples of a polysaccharide schizophyllan ranging in weight-average molecular weight Mw (in water) from 5 x 10(3) to 1.3 x 10(5) were prepared and their antitumor activity (expressed in terms of the tumor inhibition ratio) against Sarcoma 180 ascites, intrinsic viscosities [eta], and gel-filtration chromatograms in aqueous solution were determined. The tumor inhibition ratio was essentially unity for samples with Mw higher than 9 x 10(4), but reduced to zero or even to a negative value when Mw was lower than 10(4). The [eta] data combined with the chromatographic data showed that above Mw approximately 9 x 10(4) the predominant species of schizophyllan in aqueous solution is the previously found rigid triple helix, whereas below Mw approximately 9 x 10(4) both triple helices and single chains coexist in the solution and the fraction of triple helices decreases monotonically to zero as Mw is decreased to 5 x 10(3). From these findings it was concluded that the antitumor potency of schizophyllan in water is related to the amount of triple helices relative to that of single chains.  相似文献   

7.
Lin TH  Huang HB  Wei HA  Shiao SH  Chen YC 《Biopolymers》2005,78(4):179-186
The present study investigated the effect of temperature and lipid/peptide molar ratio on the conformational changes of the membrane peptide gramicidin A from a double-stranded helix to a single-stranded helical dimmer in 1,2-dimyristoyl-glycerol-3-phosphochloine (DMPC) vesicles. Tryptophan fluorescence spectroscopy results suggested that the conformational transition fitted a three-state (two-step) "folding" model. Rate constants, k(1) and k(2), were determined for each of the two steps. Since k(1) and k(2) increased with an increase in temperature, we hypothesized that the process corresponded to the breakage and formation of the backbone hydrogen bonds. The k(1) was from 10 to 45 folds faster than k(2), except for lipid/peptide molar ratios above 89.21, where k(2) increased rapidly. At molar ratios below 89.21, k(2) was insensitive to changes in lipid concentration. To account for this phenomenon, we proposed that while the driving interaction at high molar ratios is between the indole rings of the tryptophan residues and the lipid head groups, at low molar ratios there may be an intermolecular interaction between the tryptophan residues that causes gramicidin A to form an organized aggregated network. This aggregated network, caused by the tryptophan-tryptophan interaction, may be the main effect responsible for the slow down of the conformation change.  相似文献   

8.
Zhang X  Xu J  Zhang L 《Biopolymers》2005,78(4):187-196
Seven lentinan fractions of various weight-average molecular weights (M(w)), ranging from 1.45 x 10(5) to 1.13 x 10(6) g mol(-1) were investigated by static light scattering and viscometry in 0.1M NaOH solution at 25 degrees C. The intrinsic viscosity [eta] - M(w) and radius of gyration s(2)(z) (1/2) - M(w) relationships for lentinan in 0.1M NaOH solution were found to be represented by [eta] = 5.1 x 10(-3)M(w) (0.81) cm(3) g(-1) and s(2)(z) (1/2) = 2.3 x 10(-1)M(w) (0.58) nm, respectively. Focusing on the effects of the M(w) polydispersity with the Schulz-Zimm distribution function, the data of M(w), s(2)(z) (1/2), and [eta] was analyzed on the basis of the Yoshizaki-Nitta-Yamakawa theory for the unperturbed helical wormlike chain combined with the quasi-two-parameter (QTP) theory for excluded-volume effects. The persistence length, molecular weight per unit contour length, and the excluded-volume strength were determined roughly to be 6.2 nm, 980 nm(-1), and 0.1, respectively. Compared with the theoretical value calculated by the Monte Carlo model, the persistence length is longer than that of the single (1 --> 3)-beta-(D)-glucan chain. The results revealed that lentinan exists as single-stranded flexible chains in 0.1M NaOH solution with a certain degree of expansion due to the electrostatic repulsion from the interaction between the OH(-) anions and lentinan molecules.  相似文献   

9.
Understanding the conformational transitions that trigger the aggregation and amyloidogenesis of otherwise soluble peptides at atomic resolution is of fundamental relevance for the design of effective therapeutic agents against amyloid-related disorders. In the present study the transition from ideal alpha-helical to beta-hairpin conformations is revealed by long timescale molecular dynamics simulations in explicit water solvent, for two well-known amyloidogenic peptides: the H1 peptide from prion protein and the Abeta(12-28) fragment from the Abeta(1-42) peptide responsible for Alzheimer's disease. The simulations highlight the unfolding of alpha-helices, followed by the formation of bent conformations and a final convergence to ordered in register beta-hairpin conformations. The beta-hairpins observed, despite different sequences, exhibit a common dynamic behavior and the presence of a peculiar pattern of the hydrophobic side-chains, in particular in the region of the turns. These observations hint at a possible common aggregation mechanism for the onset of different amyloid diseases and a common mechanism in the transition to the beta-hairpin structures. Furthermore the simulations presented herein evidence the stabilization of the alpha-helical conformations induced by the presence of an organic fluorinated cosolvent. The results of MD simulation in 2,2,2-trifluoroethanol (TFE)/water mixture provide further evidence that the peptide coating effect of TFE molecules is responsible for the stabilization of the soluble helical conformation.  相似文献   

10.
Deuterium oxide solutions of schizophyllan, a triple-helical polysaccharide, undergoing an order-disorder transition centered at 17 degrees C, were studied by optical rotation (OR) and heat capacity (C(p)) to elucidate the molecular mechanism of the transition and water structure in the solution and frozen states. The ordered structure at low temperature consisted of the side chains and water in the vicinity forming an ordered hydrogen-bonded network surrounding the helix core and was disordered at higher temperature. In the solution state appeared clearly defined transition curves in both the OR and C(p) data. The results for three samples of different molecular weights were analyzed theoretically, treating this transition as a typical linear cooperative transition from the ordered to disordered states and explained quantitatively if the molecular weight polydispersity of the sample was considered. The excess heat capacity C(EX)(p) defined as the C(p) minus the contributions from schizophyllan and D(2)O was estimated. In the frozen state it increased with raising temperature above 150 K until the mixture melted. This was compared with the dielectric increment observed in this temperature range and ascribed to unfreezable water. From the heat capacity and dielectric data, unfreezable water is mobile but more ordered than free water. In the solution state, the excess heat capacity originates from the interactions of D(2)O molecules as bound water and structured water, and so forth. Thus the schizophyllan triple helix molds water into various structures of differing orders in solution and in the solid state.  相似文献   

11.
The peptide toxin bombolitin III [B(III)], originally isolated from bumblebee venom, has been shown to undergo a concentration-dependent conformational change from a random structure to an α-helix induced by aggregation. The aggregation process and the consequent folding results from a delicate balance of electrostatic and hydrophobic interactions. The conformational change is strongly dependent on pH and salt concentration. In order to gain insight on the structure of the aggregates, and in particular, on the aggregation number and relative orientation of helices in the molecular complexes, the following analogue of bombolitin III was designed and synthesized: Ile-Lys-Bpa-Met-Asp-Ile-Leu-Ala-Lys-Leu-Gly-Lys-Val-Leu-Ala-His-Val-NH2 Bpa3-B(III) where Bpa is benzoylphenylalanine. Bpa3-B(III) aggregates were investigated by CD and nmr techniques. The observed nuclear Overhauser effect pattern accounts for an antiparallel orientation of two distinct helices. The Bpa side chain allows for the photoinduced cross reaction with any aliphatic proton in spatial proximity. After irradiation, the reaction mixture was analyzed by high performance liquid chromatography and electrospray mass spectrometry. The results confirmed the presence of dimeric and trimeric complexes of bombolitin III formed upon interhelix cross-linking. © 1997 John Wiley & Sons, Inc. Biopoly 42: 147–156, 1997  相似文献   

12.
Sol–gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol–gel transition temperature, Tt, was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol, the equilibrium sol‐to‐gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman–Tanford equation, which describes the sol‐to‐gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol–gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol–gel transition. The general solution for the free energy for gel‐stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 685–691, 2015.  相似文献   

13.
A recently published method for the determination of the enthalpy and entropy changes of nonionic origin upon conformational transition of linear biopolyelectrolytes in solution [J. C. Benegas, A. Cesàro, R. Rizzo and S. Paoletti (1998) Biopolymers, Vol. 45, pp. 203–216] has been extended from the case of aqueous salt solutions to that of the organic solvent formamide (FA). The calculation have been applied to the case of the intramolecular transition of the K+ salt form of the sulfated polysaccharide κ‐carrageenan. The method proved to be effective in providing the desired data in FA, as it has been previously been successful for the water cases. The comparison between the predicted enthalpy change of transition and the microcalorimetric experimental one turned out to be excellent, thereby ensuring on the validity of the approach. © 1999 John Wiley & Sons, Inc. Biopoly 49: 127–130, 1999  相似文献   

14.
本文综述了低温和水分亏缺对常绿果树成花作用的最新研究结果,包括不同果树成花对胁迫过程中树体发生的生理变化,以及可能的作用机理等,提出了低温和水分亏缺对成花作用的模式图,展望了研究方向.  相似文献   

15.
Small-deformation dynamic oscillation and differential scanning calorimetry were used to ascertain the role of water molecules in high sugar/polysaccharide glasses. Increasing replacement of water with sugar affects adversely tahe degree of order in the polysaccharide network to such an extent that at level of solids >90% structure formation is no longer possible. Depending of the polymeric ability to form a network, the rheological Tg can be up to 30° higher than the calorimetric Tg.  相似文献   

16.
Curious low-temperature solubility of cellulose triacetates (CTA; here we use nominally "CTA," but the sample still contains 7% of C-6 position hydroxyls) in an organic solvent, methyl acetate (MA), was studied by a newly designed low-temperature type of DLS apparatus, which enabled for the first time to investigate the structural change of CTA in solution from 45 degrees C down to -100 degrees C. A molecularly dissolved CTA was found to coexist with three types of self-assemblies over all the temperature ranges except for the three specific temperatures T* of 30, -10, and -75 degrees C. However, these multiple self-assemblies are not in real thermodynamic equilibrium but in a metastable state, which could be stabilized effectively by the intermolecular hydrogen bonding (HB) with the help of the dipole interaction at low temperatures. In more detail, with decreasing temperature, these assemblies performed the structural reorganization drastically at three T*'s and would finally be frozen in a physical gel structure at -99 degrees C; around the freezing temperature of MA, CTA molecules could be trapped homogeneously in the frozen MA. The crucial role in such structural reorganizations is played by the balance between the intermolecular HB and the dipole interaction worked in the highly electronegative solvent. Because these interactions, which are mediated by the solvent electronegativity, change drastically with temperature, they result in the control of not only the single CTA chain conformation (= the intramolecular HB) but also the binding ways of the intermolecular HBs between CTA molecules and they induce multitudinous metastable structures in solution. Here it is noted that HB could work mainly between the C-6 position hydroxyls in the anhydroglucose units of CTA and are essentially effective at low temperatures.  相似文献   

17.
Molecular dynamics simulations using AMB06C, an in-house carbohydrate force field, (NPT ensembles, 1 atm) were carried out on a periodic cell that contained a cyclic 240 glucose residue amylose fragment (c-DP-240) and TIP3P water molecules. Molecular conformation and movement of the amylose fragment and water molecules at different temperatures were examined. The periodic cell volume, density, and potential energy were determined at temperatures above and below the glass transition temperature (Tg) in 25 K increments. The amorphous cell is constructed through successive dynamic equilibration steps at temperatures above the assumed Tg value and the temperature successively lowered until several temperature points were obtained below Tg. Molecular dynamics simulations were continued for at least 500 ps or until the volume drift stopped and remained constant for several hundred picoseconds. The Tg values were found by noting the discontinuity in slope of the volume (V), potential energy (PE), or density (ρ) versus 1/T. The changes in flexibility and motion of the amylose chain as well as differences in self diffusion coefficients of water molecules are described. The final average Tg value found (316 K) is in agreement with experimental values, i.e. 320 K.  相似文献   

18.
The sol-gel transition of gelatin, measured by thermal analysis and viscosity measurement, was analyzed in terms of the change in hydration state of polymer molecules. A new thermodynamic model was proposed in which the effect of water potential is explicitly taken into account for the evaluation of the free energy change in the sol-gel transition process. Because of the large number of water molecules involved and the small free energy change in the transition process, the contribution of water activity, a(W), was proved to be not negligible in the sol-gel transition process in solutions containing such low-molecular cosolutes as sugars, glycerol, urea, and formamide. The gel-stabilization effect of sugars and glycerol was linear with a(W), which seemed consistent with the contribution of water potential in the proposed model. The different stabilization effect among sugars and glycerol was explained by the difference in solvent ordering, which affects hydrophobic interaction among protein molecules. The gel-destabilization effect of urea and formamide could be explained only by the direct binding of them to protein molecules through hydrogen bonding. On the contrary, the polymer-polymer interaction, measured by the viscosity analysis, in polyethyleneglycol and dextran solutions was not sensitive to the change in a(W), suggesting that no substantial change in hydration state with a(W) occurred in these polymer solutions.  相似文献   

19.
Human alpha(1)-acid glycoprotein (AGP), which is comprised of 183 amino acid residues and 5 carbohydrate chains, is a major plasma protein that binds to basic and neutral drugs as well as to steroid hormones. It has a beta-sheet-rich structure in aqueous solution. Our previous findings suggest that AGP forms an alpha-helix structure through an interaction with biomembranes. We report herein on a study of the mechanism of alpha-helix formation in AGP using various modified AGPs. The disulfide reduced AGP (R-AGP) was extensively unfolded, whereas asialylated AGP (A-AGP) maintained the native structure. Intriguingly, reduced and asialylated AGP (RA-AGP) increased the alpha-helix content as observed in the presence of biomembrane models, and showed a significant decrease in ligand binding capacity. This suggests that AGP has an innate tendency to form an alpha-helix structure, and disulfide bonds are a key factor in the conformational transition between the beta-sheet and alpha-helix structures. However, RA-AGP with all histidine residues chemically modified (HRA-AGP) was found to lose the intrinsic ability to form an alpha-helix structure. Furthermore, disulfide reduction of the H172A mutant expressed in Pichia pastoris also caused a similar loss of folding ability. The present results indicate that disulfide bonds and the C-terminal region, including H172 of AGP, play important roles in alpha-helix formation in the interaction of the protein with biomembranes.  相似文献   

20.
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号