首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p53 tumour suppressor protein is phosphorylated by several protein kinases, including casein kinase II. In order to understand the functional significance of phosphorylation by casein kinase II, we have introduced mutations at serine 386 in mouse p53, the residue phosphorylated by this kinase, and investigated their effects on the ability of p53 to arrest cell growth. Replacement of serine 386 by alanine led to loss of growth suppressor activity, while aspartic acid at this position partially retained suppressor function. These data suggest that the anti-proliferative activity of p53 is activated by phosphorylation at serine 386, and establish a direct link between the covalent modification of a growth suppressor protein and regulation of its activity in mammalian cells.  相似文献   

2.
StarD10 is a dual specificity lipid transfer protein capable of shuttling phosphatidylcholine and phosphatidylethanolamine between membranes in vitro. We now provide evidence that, in vivo, StarD10 is phosphorylated on serine 284. This novel phosphorylation site was identified by tandem mass spectrometry of immunoaffinity-purified StarD10 from lysates of HEK293T cells transiently expressing the protein. In vitro kinase assays revealed that casein kinase II was capable of phosphorylating wild-type StarD10 but not a S284A mutant protein. Interestingly, hypotonic extracts prepared from HEK293T cells expressing the serine to alanine mutant exhibited increased lipid transfer activity compared with those from wild-type StarD10-expressing cells, suggesting that, in a cellular context, phosphorylation on serine 284 negatively regulates StarD10 activity. Because casein kinase II phosphorylation also inhibited lipid transfer activity of the purified recombinant StarD10 protein, inhibition is not dependent on any cellular cofactors. Instead, our data show that C-terminal StarD10 phosphorylation on serine 284 regulates its association with cellular membranes.  相似文献   

3.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

4.
Human DNA-PK is a nuclear, serine/threonine protein kinase that, when activated by DNA, phosphorylates several DNA-binding substrates, including the tumor suppressor protein p53. To identify which p53 residues are phosphorylated, we examined DNA-PK's ability to phosphorylate synthetic peptides corresponding to human p53 sequences. Serines 15 and 37 in the amino-terminal transactivation domain of human p53, and serines 7 and 18 of mouse p53, were phosphorylated by DNA-PK in the context of synthetic peptides. Other serines in these p53 peptides, and serines in other p53 peptides, including peptides containing the serine 315 p34cdc2 site and the serine 392 casein kinase II site, were not recognized by DNA-PK or were phosphorylated less efficiently. Phosphorylation of the conserved serine 15 in human p53 peptides depended on the presence of an adjacent glutamine, and phosphorylation was inhibited by the presence of a nearby lysine. Phosphorylation of recombinant wild-type mouse p53 was inhibited at high DNA concentrations, suggesting that DNA-PK may phosphorylate p53 only when both are bound to DNA at nearby sites. Our study suggests that DNA-PK may have a role in regulating cell growth and indicates how phosphorylation of serine 15 in DNA-bound p53 could alter p53 function.  相似文献   

5.
Two mutations were introduced into the wild-type mouse p53 gene by oligonucleotide-directed mutagenesis. These mutations substituted alanine or aspartic acid for serine at position 312, which is constitutively phosphorylated. Phosphopeptide mapping of the mutant proteins, expressed in COS cells, confirmed the loss of phosphorylation at position 312. There were no changes in the ability of the mutant p53s to express the conformation-dependent epitope for monoclonal antibody PAb246 or to participate in complexes with the simian virus 40 (SV40) large T antigen. Replication of a plasmid containing the SV40 origin of replication was inhibited in COS cells by wild-type p53 and both of the phosphorylation site mutants with equal efficiency. A transforming mutant of p53, encoding valine at position 135, did not inhibit SV40 DNA replication in COS cells.  相似文献   

6.
7.
8.
We have identified the phosphorylation sites in monkey p53 as well as specific changes in the phosphorylation state of free and complexed forms of simian virus 40 (SV40) large T antigen (T) and monkey p53 isolate from SV40 lytically infected CV1 cells. Phosphopeptide analyses of free T and p53 (To and p53o) and complexed T and p53 (T+ and p53+) fractions indicated several quantitative increases in the specific phosphorylation of complexed forms of both proteins. The N terminus of monkey p53+ is phosphorylated at Ser-9, Ser-15, Ser-20, either Ser-33 or Ser-37, and at least one of Ser-90 to Ser-99. The C-terminal sites are Ser-315 and Ser-392. On comparing p53+ with p53o, we found that labeling of the two N-terminal phosphotryptic peptides encompassing residues 1 to 20 and 33 to 101 was increased fivefold and that Ser-315 was sevenfold more labeled than was Ser-392. When T+ was compared with To, the N-terminal peptide containing phosphorylation sites Ser-106 through Thr-124 was twofold more labeled, the peptide containing Ser-657 through Ser-679 was sixfold more labeled and contained up to four phosphorylated serine residues, and Ser-639 and Thr-701 appeared unchanged. Overall, T+ molecules appeared to contain 3.5 mol more of labeled phosphate than did To, with the N-terminal peptide appearing fully phosphorylated. The phosphopeptide patterns obtained for lytic T+ and To fractions were nearly identical to those found for wild-type SV40 T (stably complexed with mouse p53) and mutant 5080 T (defective for p53 binding) expressed in transformed C3H10T1/2 cells (L. Tack, C. Cartwright, J. Wright, A. Srinivasan, W. Eckhart, K. Peden, and J. Pipas, J. Virol. 63:3362-3367, 1989). These results indicate that increases in specific phosphorylation sites in both T+ and p53+ correlate with the association of T with p53. The enhanced phosphorylation state may be a consequence of complex formation between T and p53 or reflect an increased affinity of p53 for highly phosphorylated forms of T.  相似文献   

9.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

10.
We have attempted to purify endogenous substrate proteins for casein kinases I and II from the cytosol of AH-66 hepatoma cells. Utilizing the fact that only a few substrates are concentrated in the fraction eluted from DEAE-cellulose between 0.3 and 0.6 M NaCl, two substrates were purified from this fraction by DEAE-cellulose chromatography, hydroxyapatite chromatography, and HPLC on a DEAE-5PW column. The purified substrate proteins had molecular masses of 30.5 kDa and 31 kDa. The 31-kDa protein substrate was markedly phosphorylated by casein kinase II, but only slightly by casein kinase I. The radioactive phosphate incorporated into 31-kDa substrate by casein kinase II was 0.2 mol/mol of the protein and phosphorylation occurred on both threonine and serine residues. The 30.5 kDa protein was only slightly phosphorylated by casein kinase II, but not at all by casein kinase I.  相似文献   

11.
Induction of a substrate for casein kinase II during lymphocyte mitogenesis   总被引:4,自引:0,他引:4  
Particulate fractions prepared from concanavalin A-activated murine T lymphocytes contain an endogenous protein kinase that phosphorylates an endogenous protein substrate of Mr 112 000. The phosphorylation of 112 kDa protein is greatly reduced or absent in unstimulated T cells. Phosphoamino acid analysis indicates that 112 kDa protein is labeled on a serine. Add-back experiments using purified protein kinases indicate that 112 kDa protein serves as a substrate for casein kinase II. Phosphorylation of 112 kDa protein by the endogenous kinase is inhibited by heparin, a known casein kinase II inhibitor. The site or sites modified by the endogenous kinase and exogenous casein kinase II appear identical by peptide-mapping experiments. A time-course of the appearance of phosphorylated 112 kDa protein following stimulation with concanavalin A, measured in the presence or absence of added casein kinase II, suggests that 112 kDa protein is induced in activated T cells. Subcellular localization studies suggest that 112 kDa protein is a nuclear protein. Silver-binding and purification studies suggest that 112 kDa protein is of the nucleolar organizing region.  相似文献   

12.
A casein kinase was highly purified from rabbit skeletal muscle whose substrate specificity and enzymatic properties were virtually identical to those of casein kinase-I from rabbit reticulocytes. Prolonged incubation of glycogen synthase with high concentrations of skeletal muscle casein kinase-I and Mg-ATP resulted in the incorporation of greater than 6 mol phosphate/mol subunit and decreased the activity ratio (+/- glucose-6P) from 0.8 to less than 0.02. The sites phosphorylated by casein kinase-I were all located in the N and C-terminal cyanogen bromide peptides, termed CB-1 and CB-2. At an incorporation of 6 mol phosphate/mol subunit, approximately equal to 2 mol/mol was present in CB-1 and approximately equal to 4 mol/mol in CB-2. Within CB-1, casein kinase-I phosphorylated the serines that were 3, 7 and 10 residues from the N-terminus of glycogen synthase, with minor phosphorylation at threonine-5. Within CB-2, approximately equal to 90% of the phosphate incorporated was located between residues 28 and 53, and at least five of the seven serine residues in this region were phosphorylated. The remaining 10% of phosphate incorporated into CB-2 was located between residues 98 and 123, mainly at a serine residue(s). Two of the major sites labelled by casein kinase-I (serine-3 and serine-10 of CB-1) are not phosphorylated by any other protein kinase. This will enable the role of casein kinase-I as a glycogen synthase kinase in vivo to be evaluated.  相似文献   

13.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32,000, is phosphorylated in vitro by casein kinase II at a site which is also phosphorylated in intact cells. In the present study, we show that a protein kinase activity, present in caudate-putamen cytosol, phosphorylates DARPP-32 on a seryl residue located on the same thermolytic peptide that is phosphorylated by purified casein kinase II. This DARPP-32 serine kinase was indistinguishable from casein kinase II on the basis of a number of biochemical criteria. Excitotoxic lesions of the caudate-putamen and immunocytochemistry revealed the presence of casein kinase II in the medium-sized striatonigral neurons which are known to contain DARPP-32. Casein kinase II activity was high in all rat brain regions studied, and casein kinase II-like immunoreactivity was detected in most brain neurons, although some neuronal populations (e.g., cortical pyramidal cells and large striatal neurons) were stained more intensely than others. In rat caudate-putamen, 45% of the total casein kinase II activity was in the cytosol and 20% in the synaptosomal fraction. In mouse cerebral cortex and caudate-putamen, casein kinase II activity was high at embryonic day 16, and remained elevated during development. In addition to DARPP-32, several major substrates for casein kinase II were observed specifically in brain, but not in liver extracts. The high activity of casein kinase II in brain from the embryonic period to adult age and the existence of a number of specific substrates suggest that this enzyme may play an important role in both developing and mature brain, possibly in modulating the responsiveness of target proteins to various extracellular signals.  相似文献   

14.
A nonhistone chromatin protein (NHCP) has been purified to homogeneity from a 0.5 M NaCl extract of Ehrlich ascites tumor cell (EAT cell) nuclei as a phosphate acceptor for casein kinase II using ion-exchange column chromatographies and Sephacryl S300 gel filtration. The purified NHCP (approximate Mr = 400,000) was found to be a tetramer of an Mr = 98,000 polypeptide (pI = 6.9) and to have high contents of glycine (15%) and serine (11.6%). This protein (designated as 400-kDa NHCP) was highly phosphorylated by casein kinase II (Mr = 130,000), but not by histone kinase. Casein kinase II phosphorylated only seryl residues of the purified 400-kDa NHCP. The NHCP bound with DNA, but not with RNAs, and the DNA binding ability of the protein was reduced when it was phosphorylated by casein kinase II. Moreover, we found that (a) the 400-kDa NHCP is present in large quantities in malignant mouse cells, such as EAT, EL-4, and Meth-A cells, but only slightly in normal tissues and cells; (b) the protein level is rapidly increased when mouse lymphocytes are treated with recombinant interleukin 2 (T cell growth factor) or concanavalin A; and (c) the kinase responsible for the 400-kDa NHCP phosphorylation in the chromatin of various mouse cells is a casein kinase II. These experimental results suggest that the 400-kDa NHCP acts as an effective phosphate acceptor for casein kinase II at the chromatin level and that an increased phosphorylation of the protein by the kinase may be implicated in the progress of cell differentiation and proliferation.  相似文献   

15.
ATM is mutated in the human genetic disorder ataxia telangiectasia, which is characterized by ataxia, immune defects, and cancer predisposition. Cells that lack ATM exhibit delayed up-regulation of p53 in response to ionizing radiation. Serine 15 of p53 is phosphorylated in vivo in response to ionizing radiation, and antibodies to ATM immunoprecipitate a protein kinase activity that, in the presence of manganese, phosphorylates p53 at serine 15. Immunoprecipitates of ATM also phosphorylate PHAS-I in a manganese-dependent manner. Here we have purified ATM from human cells using nine chromatographic steps. Highly purified ATM phosphorylated PHAS-I, the 32-kDa subunit of RPA, serine 15 of p53, and Chk2 in vitro. The majority of the ATM phosphorylation sites in Chk2 were located in the amino-terminal 57 amino acids. In each case, phosphorylation was strictly dependent on manganese. ATM protein kinase activity was inhibited by wortmannin with an IC(50) of approximately 100 nM. Phosphorylation of RPA, but not p53, Chk2, or PHAS-I, was stimulated by DNA. The related protein, DNA-dependent protein kinase catalytic subunit, also phosphorylated PHAS-I, RPA, and Chk2 in the presence of manganese, suggesting that the requirement for manganese is a characteristic of this class of enzyme.  相似文献   

16.
《FEBS letters》1997,403(3):313-317
Proteasomes function mainly in the ATP-dependent degradation of proteins that have been conjugated with ubiquitin. To demonstrate the phosphorylation of proteasomes in plants, we conducted an enzymatic dephosphorylation experiment with a crude extract of rice cultured cells. The results indicated that the C2 subunit of the 20S proteasome is phosphorylated in vivo in cultured cells. An in-gel kinase assay and analysis of phosphoamino acids revealed that the C2 subunit is phosphorylated by a 40-kDa serine/threonine protein kinase, the activity of which is inhibited by heparin, a specific inhibitor of casein kinase II. The catalytic subunit of casein kinase II from Arabidopsis was also able to phosphorylate the C2 subunit. These results suggest that the C2 subunit in rice is probably phosphorylated by casein kinase II. Our demonstration of the phosphorylation of proteasomes in plants suggests that phosphorylation might be involved in the general regulation of the functions of proteasomes.© 1997 Federation of European Biochemical Societies.  相似文献   

17.
18.
In human epidermal carcinoma A431 cells, the beta subunit of casein kinase II is phosphorylated at an autophosphorylation site and at serine 209 which can be phosphorylated in vitro by p34cdc2 (Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991) J. Biol. Chem. 266, 20380-20389). Given the importance of p34cdc2 in the regulation of cell cycle events, we were interested in examining the phosphorylation of casein kinase II during different stages of the cell cycle. In this study it is demonstrated that the extent of phosphorylation of serine 209 in the beta subunit is significantly increased relative to phosphorylation of the autophosphorylation site when chicken bursal lymphoma BK3A cells are arrested at mitosis by nocodazole treatment. This result suggests that serine 209 is a likely physiological target for p34cdc2. In addition, the alpha subunit of casein kinase II also undergoes dramatic phosphorylation with an associated alteration in its electrophoretic mobility when BK3A cells or human Jurkat cells are arrested with nocodazole. Phosphopeptide mapping studies indicate that p34cdc2 can phosphorylate in vitro the same peptides on the alpha subunit that are phosphorylated in cells arrested at mitosis. These phosphorylation sites were localized to serine and threonine residues in the carboxyl-terminal domain of alpha. Taken together, the results of this study indicate that casein kinase II is a probable physiological substrate for p34cdc2 and suggest that its functional properties could be affected in a cell cycle-dependent manner.  相似文献   

19.
20.
Selective immunoisolation of P53 from Sf9 cells coexpressing wild-type P53 and casein kinase II yielded a preparation containing casein kinase II, thus suggesting that the two proteins may associate in a molecular complex in the intact cell. Such a complex could indeed be demonstrated in vitro between purified recombinant P53 and oligomeric casein kinase II and was shown to dissociate when P53 became phosphorylated by the kinase. This suggested that the P53 C-terminal domain, which contains the casein kinase II phosphorylation site was involved in the protein-protein interaction; this was confirmed by the fact that an anti-P53 monoclonal antibody directed to that domain inhibited the P53-casein kinase II association. Studies with isolated recombinant casein kinase II subunits disclosed that although the alpha (catalytic) subunit could phosphorylate P53, the formation of a stable P53-casein kinase II association required the presence of the beta subunit of the kinase. This was confirmed by immunoisolation of a P53-beta subunit complex from cells expressing both polypeptides. Although the biological significance of a reversible P53-casein kinase II molecular complex in the control of cell proliferation processes remains to be defined, these observations suggest the possibility of a novel mechanism regulating P53 and casein kinase II activities in the intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号