首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
带有His tag的人胞浆磷脂酶A2 的C2结构域高效表达 ,用内源荧光的变化测定了其稳定性和其与钙离子结合的结合常数 .结果表明 ,带有His tag的C2结构域仍可有效用于研究其折叠及其与钙离子的协同性结合 ,温度从 2 2℃升高到 35℃时 ,C2结构域和钙离子结合的协同性程度显著增强 .  相似文献   

2.
We previously reported that OsERG1 and OsERG3 encode rice small C2-domain proteins with different biochemical properties in Ca2+- and phospholipid-binding assays. Os-ERG1 exhibited Ca2+-dependent phospholipid binding, which was not observed with OsERG3. In the present study, we show that both OsERG1 and OsERG3 proteins exhibit oligomerization properties as determined by native polyacrylamide gel electrophoresis (PAGE) and glutaraldehyde cross-linking experiments. Furthermore, in vitro phosphorylation assays reveal the phosphorylation of OsERG1 and OsERG3 by a rice calcium-dependent protein kinase, OsCDPK5. Our mutation analysis on putative serine phosphorylation sites shows that the first serine (Ser) at position 41 of OsERG1 may be an essential residue for phosphorylation by OsCDPK5. Mutation of Ser41 to alanine (OsERG1S41A) and aspartate (OsERG1S41D) abolishes the ability of OsERG1 to bind phospholipids regardless of the presence or absence of Ca2+ ions. In addition, unlike the OsERG1 wild-type form, the mutant OsERG1 (S41A)::smGFP construct lost the ability to translocate from the cytosol to the plasma membrane in response to calcium ions or fungal elicitor. These results indicate that Ser41 may be essential for the function of OsERG1.  相似文献   

3.
蛋白激酶C研究的最新进展   总被引:9,自引:1,他引:8  
作为能使蛋白激酶C(PKC)活化的第二信使甘油二酯(DAG)不仅可由磷脂酰肌醇(PtdIns)水解产生,大量实验表明还可从磷脂酰胆碱(PC)水解而来,其中磷脂酶C(PLC)及磷脂酶D(PLD)参与了这一过程,磷脂酶A2(PLA2)的作用产物脂肪酸(FA)也能激活PKC.PKC至少有10种亚型,依据其活化方式可分三大类:典型PKC,新PKC和非典型PKC.PKC参与了基因表达的调控.  相似文献   

4.
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid.  相似文献   

5.
Arachidonic acid, one of the major unsaturated fatty acids released during cell stimulation, participates in the signaling necessary for activation of different enzymes, including protein kinase C (PKC). Here, we demonstrate that arachidonic acid is a direct activator of PKCalpha, but needs the cooperation of Ca(2+) to exert its function. By using several mutants of the C2 and C1 domains, we were able to determine the molecular mechanism of this activation. More specifically, site-directed mutagenesis in key residues found in the C2 domain showed that the Ca(2+)-binding region was essential for the arachidonic acid-dependent localization and activation of PKCalpha. However, the lysine-rich cluster, also located in the C2 domain, played no relevant role in either the membrane localization or activation of the enzyme. Moreover, site-directed mutagenesis in key residues placed in the C1A and C1B subdomains, which are responsible for the diacylglycerol/phorbil ester interaction, demonstrated that the C1A subdomain was involved in the membrane localization and activation mechanism. Taken together, these data suggest a very precise mechanism for PKCalpha activation by arachidonic acid, involving a sequential model of activation in which an increase in intracytosolic Ca(2+) leads to the interaction of arachidonic acid with the Ca(2+)-binding region; only after this step, does the C1A subdomain interact with arachidonic acid, leading to full activation of the enzyme.  相似文献   

6.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

7.
8.
9.
Real-time voltammetry measurements from cracked PC12 cells were used to analyze the role of synaptotagmin-SNARE interactions during Ca2+-triggered exocytosis. The isolated C2A domain of synaptotagmin I neither binds SNAREs nor inhibits norepinephrine secretion. In contrast, two C2 domains in tandem (either C2A-C2B or C2A-C2A) bind strongly to SNAREs, displace native synaptotagmin from SNARE complexes, and rapidly inhibit exocytosis. The tandem C2 domains of synaptotagmin cooperate via a novel mechanism in which the disruptive effects of Ca2+ ligand mutations in one C2 domain can be partially alleviated by the presence of an adjacent C2 domain. Complete disruption of Ca2+-triggered membrane and target membrane SNARE interactions required simultaneous neutralization of Ca2+ ligands in both C2 domains of the protein. We conclude that synaptotagmin-SNARE interactions regulate membrane fusion and that cooperation between synaptotagmin's C2 domains is crucial to its function.  相似文献   

10.
The C2 domain of protein kinase Calpha (PKCalpha) corresponds to the regulatory sequence motif, found in a large variety of membrane trafficking and signal transduction proteins, that mediates the recruitment of proteins by phospholipid membranes. In the PKCalpha isoenzyme, the Ca2+-dependent binding to membranes is highly specific to 1,2-sn-phosphatidyl-l-serine. Intrinsic Ca2+ binding tends to be of low affinity and non-cooperative, while phospholipid membranes enhance the overall affinity of Ca2+ and convert it into cooperative binding. The crystal structure of a ternary complex of the PKCalpha-C2 domain showed the binding of two calcium ions and of one 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) molecule that was coordinated directly to one of the calcium ions. The structures of the C2 domain of PKCalpha crystallised in the presence of Ca2+ with either 1,2-diacetyl-sn-phosphatidyl-l-serine (DAPS) or 1,2-dicaproyl-sn-phosphatidic acid (DCPA) have now been determined and refined at 1.9 A and at 2.0 A, respectively. DAPS, a phospholipid with short hydrocarbon chains, was expected to facilitate the accommodation of the phospholipid ligand inside the Ca2+-binding pocket. DCPA, with a phosphatidic acid (PA) head group, was used to investigate the preference for phospholipids with phosphatidyl-l-serine (PS) head groups. The two structures determined show the presence of an additional binding site for anionic phospholipids in the vicinity of the conserved lysine-rich cluster. Site-directed mutagenesis, on the lysine residues from this cluster that interact directly with the phospholipid, revealed a substantial decrease in C2 domain binding to vesicles when concentrations of either PS or PA were increased in the absence of Ca2+. In the complex of the C2 domain with DAPS a third Ca2+, which binds an extra phosphate group, was identified in the calcium-binding regions (CBRs). The interplay between calcium ions and phosphate groups or phospholipid molecules in the C2 domain of PKCalpha is supported by the specificity and spatial organisation of the binding sites in the domain and by the variable occupancies of ligands found in the different crystal structures. Implications for PKCalpha activity of these structural results, in particular at the level of the binding affinity of the C2 domain to membranes, are discussed.  相似文献   

11.
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP+-induced cytosolic phospholipase A2 (cPLA2) activation of dopaminergic neurons. MPP+ activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca2+]i level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA2, and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF3), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA2 on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA2 phosphorylation at Ser505. Inhibitors of cPLA2 and PKG increased viability and reduced MPP+-induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA2 phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA2.  相似文献   

12.
Bovine seminal plasma contains a group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), and they are secreted by the seminal vesicles. In our study, we purified the BSP-A1/-A2 through affinity chromatography and found for the first time that BSP-A1/-A2 can inhibit the activity of protein kinase C (PKC) and tyrosine protein kinase (TPK). The inhibition was dose dependent. When the PKC and TPK activities are expressed as the logarithm of percentage activity taking the activity in the absence of the BSP-A1/-A2 as 100%, there is a linear relationship between the their activities and the dose of BSP-A1/-A2.  相似文献   

13.
Group IVA cytosolic phospholipase A2 (cPLA2α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA2α binds zwitterionic lipids such as phosphatidylcholine in a Ca2+-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA2α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA2α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA2α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA2α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA2α.  相似文献   

14.
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. Type 2C PPs (PP2Cs) represent the major group of PPs in plants, and recent discovery of novel abscisic acid (ABA) receptors (ABARs) has placed the PP2Cs at the center stage of the major signaling pathway regulating plant responses to stresses and plant development. Several studies have provided deep insight into vital roles of the PP2Cs in various plant processes. Global analyses of the PP2C gene family in model plants have contributed to our understanding of their genomic diversity and conservation, across plant species. In this review, we discuss the genomic and structural accounts of PP2Cs in plants. Recent advancements in their interaction paradigm with ABARs and sucrose nonfermenting related kinases 2 (SnRK2s) in ABA signaling are also highlighted. In addition, expression analyses and important roles of PP2Cs in the regulation of biotic and abiotic stress responses, potassium (K+) deficiency signaling, plant immunity and development are elaborated. Knowledge of functional roles of specific PP2Cs could be exploited for the genetic manipulation of crop plants. Genetic engineering using PP2C genes could provide great impetus in the agricultural biotechnology sector in terms of imparting desired traits, including a higher degree of stress tolerance and productivity without a yield penalty.  相似文献   

15.
16.
Modification of His-47 and removal of the N-terminal octapeptide caused a different effect on the structure of Naja naja atra (Taiwan cobra) phospholipase A2 (PLA2). Unlike native enzyme, Ca2+ induced an alteration in the structural flexibility of His-modified PLA2. Moreover, the spatial positions of Trp residues in His-modified PLA2 were not properly rearranged toward lipid-water interface in the presence of Ca2+. CD spectra and fluorescence measurement showed that the dynamic properties of Trp residues and the gross conformation of N-terminally truncated PLA2 were totally different from native enzyme. Although a precipitous drop in the enzymatic activity was observed with modified PLA2, His-modified PLA2 and N-terminally truncated PLA2 retained cytotoxicity on inducing necrotic death of human neuroblastoma SK-N-SH cells. Our data suggest that structural perturbations elicited by the chemical modification cause a dissociation of enzymatic activity and cytotoxicity of PLA2.  相似文献   

17.
Calcium signals mediate a multitude of plant responses to external stimuli. Calcineurin B-like (CBL) proteins and their target kinases, CBL-interacting protein kinases (CIPKs), represent important relays in plant calcium signaling. CBL interacts with CIPK through a conserved motif (NAF/FISL motif) within the C-terminal regulatory domain. To better understand the functional role of the CBL-CIPK system, we determined the crystal structure of AtCBL2 in complex with the regulatory domain of AtCIPK14 at 1.2 Å resolution. The NAF/FISL motif is inserted into a hydrophobic crevice within AtCBL2, accompanied by a large displacement of the helices and loop on the opposite side of the NAF/FISL motif from the C-terminal region, which shields the hydrophobic crevice in free form. Ca2+ are coordinated within four EF hands in AtCBL2 in bound form. This calcium coordination pattern differs from that in the structure of the SOS3-SOS2 complex previously reported. Structural comparison of the two structures shows that the recognition of CBL by CIPK is performed in a similar manner, but inherent interactions confer binding affinity and specificity.  相似文献   

18.
Sequences of 16 NAD and/or NADP-linked aldehyde oxidoreductases are aligned, including representative examples of all aldehyde dehydrogenase forms with wide substrate preferences as well as additional types with distinct specificities for certain metabolic aldehyde intermediates, particularly semialdehydes, yielding pairwise identities from 15 to 83%. Eleven of 23 invariant residues are glycine and three are proline, indicating evolutionary restraint against alteration of peptide chain-bending points. Additionally, another 66 positions show high conservation of residue type, mostly hydrophobic residues. Ten of these occur in predicted beta-strands, suggesting important interior-packing interactions. A single invariant cysteine residue is found, further supporting its catalytic role. A previously identified essential glutamic acid residue is conserved in all but methyl malonyl semialdehyde dehydrogenase, which may relate to formation by that enzyme of a CoA ester as a product rather than a free carboxylate species. Earlier, similarity to a GXGXXG segment expected in the NAD-binding site was noted from alignments with fewer sequences. The same region continues to be indicated, although now only the first glycine residue is strictly conserved and the second (usually threonine) is not present at all, suggesting greater variance in coenzyme-binding interactions.  相似文献   

19.
The binding force between a liposome and the C2A domain of synaptotagmin I was determined by an atomic force microscopy (AFM). Liposomes were immobilized on the surface of the L1 sensor chip and the C2A domains, which recognize phosphatidylserine, were chemically conjugated onto a gold-coated cantilever tip. The average interaction force between the C2A domain and the liposome was 306 (±57) pN while the force between untreated cantilever and the liposome was 58 (±16) pN. This work helps understand the physicochemical interactions between proteins and lipid vesicles for the design of high affinity protein probes against the apoptotic cell surface. Revisions requested 13 December 2005; Revisions received 9 January 2006  相似文献   

20.
Protein kinase C eta (PKCeta) is one of several PKC isoforms found in humans. It is a novel PKC isoform in that it is activated by diacylglycerol and anionic phospholipids but not calcium. The crystal structure of the PKCeta-C2 domain, which is thought to mediate anionic phospholipid sensing in the protein, was determined at 1.75 A resolution. The structure is similar to that of the PKC epsilon C2 domain but with significant variations at the putative lipid-binding site. Two serine residues within PKC eta were identified in vitro as potential autophosphorylation sites. In the unphosphorylated structure both serines line the putative lipid-binding site and may therefore play a role in the lipid-regulation of the kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号