首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed a series of experiments using alanine-scanning mutagenesis to locate side chains within human granulocyte colony-stimulating factor (G-CSF) that are involved in human G-CSF receptor binding. We constructed a panel of 28 alanine mutants that examined all surface exposed residues on helices A and D, as well as all charged residues on the surface of G-CSF. The G-CSF mutants were expressed in a transiently transfected mammalian cell line and quantitated by a sensitive biosensor method. We measured the activity of mutant proteins using an in vitro proliferation assay and an ELISA binding competition assay. These studies show that there is a region of five charged residues on helices A and C employed by G-CSF in binding its receptor, with the most important residue in this binding patch being Glu 19. Both wild-type G-CSF and the E19A mutant were expressed in E. coli. The re-folded proteins were found to have proliferative activities similar to the analogous proteins from mammalian cells: furthermore, biophysical analysis indicated that the E19A mutation does not cause gross structural perturbations in G-CSF. Although G-CSF is likely to signal through receptor homo-dimerization, we found no compelling evidence for a second receptor binding region. We also found no evidence of self-antagonism at high G-CSF concentrations, suggesting that, in contrast to human growth hormone (hGH) and erythropoietin (EPO), G-CSF probably does not signal via a pure 2:1 receptor ligand complex. Thus, G-CSF, while having a similar tertiary structure to hGH and EPO, uses different areas of the four helix bundle for high-affinity interaction with its receptor.  相似文献   

2.
3.
Abstract: The human cannabinoid receptor associated with the CNS (CB1) binds Δ9-tetrahydrocannabinol, the psychoactive component of marijuana, and other cannabimimetic compounds. This receptor is a member of the seven transmembrane domain G protein-coupled receptor family and mediates its effects through inhibition of adenylyl cyclase. An understanding of the molecular mechanisms involved in ligand binding and receptor activation requires identification of the active site residues and their role. Lys192 of the third transmembrane domain of the receptor is noteworthy because it is the only nonconserved, charged residue in the transmembrane region. To investigate the properties of this residue, which are important for both ligand binding and receptor activation, we generated mutant receptors in which this amino acid was changed to either Arg (K192R), Gln (K192Q), or Glu (K192E). Wild-type and mutant receptors were stably expressed in Chinese hamster ovary cells and were evaluated in binding assays with the bicyclic cannabinoid CP-55,940 and the aminoalkylindole WIN 55,212-2. We found that only the most conservative change of Lys to Arg allowed retention of binding affinity to CP-55,940, whereas WIN 55,212-2 bound to all of the mutant receptors in the same range as it bound the wild type. Analysis of the ligand-induced inhibition of cyclic AMP production in cells expressing each of the receptors gave an EC50 value for each agonist that was comparable to its binding affinity, with one exception. Although the mutant K192E receptor displayed similar binding affinity as the wild type with WIN 55,212-2, an order of magnitude difference was observed for the EC50 for cyclic AMP inhibition with this compound. The results of this study indicate that binding of CP-55,940 is highly sensitive to the chemical nature of residue 192. In contrast, although this residue is not critical for WIN 55,212-2 binding, the data suggest a role for Lys192 in WIN 55,212-2-induced receptor activation.  相似文献   

4.
We have performed mutational analyses of restriction endonuclease HindIII in order to identify the amino acid residues responsible for enzyme activity. Four of the seven HindIII mutants, which had His-tag sequences at the N-termini, were expressed in Escherichia coli, and purified to homogeneity. The His-tag sequence did not affect enzyme activity, whereas it hindered binding of the DNA probe in gel retardation assays. A mutant E86K in which Lys was substituted for Glu at residue 86 exhibited high endonuclease activity. Gel retardation assays showed high affinity of this mutant to the DNA probe. Surprisingly, in the presence of a transition metal, Mo(2+) or Mn(2+), the E86K mutant cleaved substrate DNA at a site other than HindIII. Substitution of Glu for Val at residue 106 (V106E), and Asn for Lys at residue 125 (K125N) resulted in a decrease in both endonucleolytic and DNA binding activities of the enzyme. Furthermore, substitution of Leu for Asp at residue 108 (D108L) abolished both HindIII endonuclease and DNA binding activities. CD spectra of the wild type and the two mutants, E86K and D108L, were similar to each other, suggesting that there was little change in conformation as a result of the mutations. These results account for the notion that Asp108 could be directly involved in HindIII catalytic function, and that the substitution at residue 86 may bring about new interactions between DNA and cations.  相似文献   

5.
The family of G-protein-linked receptors includes many important pharmacological targets, of which the beta-adrenergic receptor is one of the best characterized. A better understanding of those factors that determine whether a ligand functions as an antagonist or as an agonist would facilitate the development of pharmaceutical agents that act at these receptors. Site-directed mutagenesis of the hamster beta 2-adrenergic receptor has implicated the conserved Asp113 residue in the third hydrophobic domain of the receptor in the interaction with cationic amine agonists and antagonists (Strader, C. D., Sigal, I. S., Candelore, M. R., Rands, E., Hill, W. S., and Dixon, R. A. F. (1988) J. Biol. Chem, 263, 10267-10271). We now report that substitution of Asp113 with a glutamic acid residue results in a mutant beta-adrenergic receptor which recognizes several known beta-adrenergic antagonists as partial agonists. This partial agonist activity requires the presence of a carboxylate side chain on the amino acid residue at position 113 and is not observed when an asparagine residue is substituted at this position. These observations support the existence of overlapping binding sites for agonists and antagonists on the beta-adrenergic receptor and demonstrate that genetic engineering of receptors can complement structure-activity studies of ligands in defining the molecular interactions involved in receptor activation.  相似文献   

6.
7.
G protein-coupled receptors (GPCRs) are the most common targets of drug action. Allosteric modulators bind to the seven-transmembrane domain of family 3 GPCRs and offer enhanced selectivity over orthosteric ligands that bind to the large extracellular N terminus. We characterize a novel negative allosteric modulator of the human Ca(2+) receptor, Compound 1, that retains activity against the E837A mutant that lacks a response to previously described positive and negative modulators. A related compound, JKJ05, acts as a negative allosteric modulator on the wild type receptor but as a positive modulator on the E837A mutant receptor. This positive modulation critically depends on the primary amine in JKJ05, which appears to interact with acidic residue Glu(767) in our model of the seven-transmembrane domain of the receptor. Our results suggest the need for identification of possible genetic variation in the allosteric site of therapeutically targeted GPCRs.  相似文献   

8.
We identified a cysteine residue, conserved near the N terminus of Pex5p- and Pex20p-like proteins, that is essential for the cytosolic relocation of peroxisomal Pex20p. Surprisingly, this residue is not completely essential for the function of the protein; its point mutation into a serine in Pex20p(C8S) causes the accumulation of the protein at the peroxisome membrane, but this is quickly followed by its subsequent degradation by an ubiquitin-dependent quality control pathway called RADAR (receptor accumulation and degradation in the absence of recycling). This degradative pathway allows partial growth of the Pex20p(C8S) mutant on peroxisome-requiring medium. Mutation of cysteine 8 (C8S) and lysine 19 (K19R), the target residue of the RADAR pathway within Pex20p, leads to a stable but non-functional protein because it fails to recycle to the cytosol. This suggests a role for Cys-8 in Pex20p recycling and that constitutive degradation of peroxisomal receptors can be a partially functional alternative to receptor recycling. In addition, expression of this mutant protein in wild-type cells confers a dominant-negative, oleate-specific growth defect, which is a useful tool for a better understanding of peroxisomal receptor recycling.  相似文献   

9.
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is dependent on monovalent cations, K(+) or NH(4)(+), for high activity. We have shown previously that Glu-69, which is a ligand to the bound cation, is important in monovalent cation binding and activation [Sundararaju, B., Chen, H., Shillcutt, S., and Phillips, R. S. (2000) Biochemistry 39, 8546-8555]. Lys-256 is located in the monovalent cation binding site of TPL, where it forms a hydrogen bond with a structural water bound to the cation. This lysine residue is highly conserved in sequences of TPL and the paralogue, tryptophan indole-lyase. We have now prepared K256A, K256H, K256R, and E69D/K256R mutant TPLs to probe the role of Lys-256 in monovalent cation binding and activation. K256A and K256H TPLs have low activity (k(cat)/K(m) values of 0.01-0.1%), are not activated by monovalent cations, and do not exhibit fluorescence emission at 500 nm from the PLP cofactor. In contrast, K256R TPL has higher activity (k(cat)/K(m) about 10% of wild-type TPL), is activated by K(+), and exhibits fluorescence emission from the PLP cofactor. K256A, K256H, and K256R TPLs bind PLP somewhat weaker than wild-type TPL. E69D/K256R TPL was prepared to determine if the guanidine side chain could substitute for the monovalent cation. This mutant TPL has wild-type activity with S-Et-L-Cys or S-(o-nitrophenyl)-L-Cys but has no detectable activity with L-Tyr. E69D/K256R TPL is not activated by monovalent cations and does not show PLP fluorescence. In contrast to wild-type and other mutant TPLs, PLP binding to E69D/K256R is very slow, requiring several hours of incubation to obtain 1 mol of PLP per subunit. Thus, E69D/K256R TPL appears to have altered dynamics. All of the mutant TPLs react with inhibitors, L-Ala, L-Met, and L-Phe, to form equilibrating mixtures of external aldimine and quinonoid intermediates. Thus, Lys-256 is not the base which removes the alpha-proton during catalysis. The results show that the function of Lys-256 in TPL is in monovalent cation binding and activation.  相似文献   

10.
SOCS3 is essential for regulating the extent, duration, and specificity of cellular responses to cytokines such as G-CSF and IL-6. Here we describe the solution structure of SOCS3, the first structure determined for any SOCS protein, in complex with a phosphotyrosine-containing peptide from the IL-6 receptor signaling subunit gp130. The structure of the complex shows that seven peptide residues form a predominantly hydrophobic binding motif. Regions outside the SOCS3 SH2 domain are important for ligand binding, in particular, a single 15 residue alpha helix immediately N-terminal to the SH2 domain makes direct contacts with the phosphotyrosine binding loop and, in part, determines its geometry. The SH2 domain itself is remarkable in that it contains a 35 residue unstructured PEST motif insertion that is not required for STAT inhibition. The PEST motif increases SOCS3 turnover and affects its degradation pathway, implying that it has an important regulatory role inside the cell.  相似文献   

11.
c-Cbl down-regulates receptor tyrosine kinases by conjugating ubiquitin to them, leading to receptor internalization and degradation. The ubiquitin protein ligase activity of c-Cbl (abbreviated as E3 activity) is mediated by its RING finger domain. We show here that the E3 activity of c-Cbl is negatively regulated by other domains present in the amino-terminal half of the protein (the TKB and linker helix domains) and that this negative regulation is removed when the protein is phosphorylated on tyrosine residues. Protease digestion studies indicate that tyrosine phosphorylation alters the conformation of c-Cbl. We also show that mutation of certain conserved tyrosine residues to glutamate can constitutively activate the E3 activity of c-Cbl. In particular, a Y371E mutant shows constitutive E3 activity while retaining the ability to bind epidermal growth factor receptor (EGFR). The Y371E mutant also has altered protease sensitivity from wild type, instead resembling the proteolytic pattern seen with tyrosine-phosphorylated c-Cbl. Mutation of the homologous tyrosine residue in Cbl-b to glutamate also leads to E3 activation while retaining EGFR-binding ability. These studies argue that Tyr-371 plays a key role in activating the E3 activity of c-Cbl and that the Y371E mutant may partially mimic phosphorylation at that site. However, Tyr-371 point mutants of c-Cbl are still able to undergo phosphorylation-induced E3 activation, and we show that Tyr-368 can also be phosphorylated in addition to Tyr-371, and contributes to activation.  相似文献   

12.
13.
Myelopoietins (MPOs) are a family of engineered dual interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) receptor agonists that are superior in comparison to the single agonists in their ability to promote the growth and maturation of hematopoietic cells of the myeloid lineage. A series of MPO molecules were created which incorporated circularly permuted G-CSF (cpG-CSF) sequences with an IL-3 receptor (IL-3R) agonist moiety attached at locations that correspond to the loops that connect the helices of the G-CSF four-helix bundle structure. The cpG-CSF linkage sites (using the original sequence numbering) were residue 39, which is at the beginning of the first loop connecting helices 1 and 2; residue 97, which is in the turn connecting helices 2 and 3; and residues 126, 133, and 142, which are at the beginning, middle, and end, respectively, of the loop connecting helices 3 and 4. The N- and C-terminal helices of each cpG-CSF domain were constrained, either by direct linkage of the termini (L0) or by replacement of the amino-terminal 10-residue segment with a seven-residue linker composed of SGGSGGS (L1). All of the MPO molecules stimulated the proliferation of both IL-3-dependent (EC50 = 13-95 pM) and G-CSF-dependent (EC50 = 35-710 pM) cell lines. MPOs with the IL-3R agonist domain linked to cpG-CSFs in the first (residue 39) or second (residue 133) long overhand loops were found by CD spectroscopy to have helical contents similar to that expected for a protein comprised of two linked four-helix bundles. The MPOs retained the ability to bind to the IL-3R with affinities similar to that of the parental MPO. Using both a cell surface competitive binding assay and surface plasmon resonance detection of binding kinetics, the MPOs were found to bind to the G-CSF receptor with low nanomolar affinities, similar to that of G-CSF(S17). In a study of isolated cpG-CSF domains [Feng, Y., et al. (1999) Biochemistry 38, 4553-4563], domains with the L1 linker had lower G-CSF receptor-mediated proliferative activities and conformational stabilities than those which had the L0 linker. A similar trend was found for the MPOs in which the G-CSFR agonist activity is mostly a property of the cpG-CSF domain. Important exceptions were found in which the linkage to the IL-3R agonist domain either restored (e.g., attachment at residue 142) or further decreased (linkage at residue 39) the G-CSFR-mediated proliferative activity. MPO in which the IL-3R agonist domain is attached to the cpG-CSF(L1)[133/132] domain was shown to be more potent than the coaddition of the IL-3R agonist and G-CSF in stimulating the production of CFU-GM colonies in a human bone marrow-derived CD34+ colony-forming unit assay. Several MPOs also had decreased proinflammatory activity in a leukotriene C4 release assay using N-formyl-Met-Leu-Phe-primed human monocytes. It was found that circular permutation of the G-CSF domain can alter the ratio of G-CSFR:IL-3R agonist activities, demonstrating that it is a useful tool in engineering chimeric proteins with therapeutic potential.  相似文献   

14.
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Delta716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Delta716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation.  相似文献   

15.
We have identified a mutation of human gamma-interferon (IFN gamma) causing a temperature-sensitive phenotype. We used a randomized oligonucleotide to mutagenize a synthetic human IFN gamma gene, then screened the resulting mutants produced in Escherichia coli for proteins with altered biological activity. One mutant protein selected for detailed characterization exhibited less than 0.3% of the specific biological activity of native IFN gamma in an antiviral activity assay performed at 37 degrees C. However, the protein bound the human IFN gamma receptor with native efficiency at 4 degrees C. Sequencing the plasmid DNA encoding this protein showed that the mutation changed the lysine residue at amino acid 43 to glutamic acid (IFN gamma/K43E). Site-specific mutagenesis at amino acid 43 showed that this protein's phenotype resulted from positioning a negative charge at position 43. Structural characterization of IFN gamma/K43E using CD demonstrated that the protein had native conformation at 25 degrees C, but assumed an altered conformation at 37 degrees C. IFN gamma/K43E in this altered conformation bound poorly to the IFN gamma receptor at 37 degrees C, providing a rationale for the mutant's decreased antiviral activity.  相似文献   

16.
A Yoshikawa  H Murakami    S Nagata 《The EMBO journal》1995,14(21):5288-5296
The receptor for granulocyte colony-stimulating factor (G-CSFR) is a hemopoietic growth factor receptor, which mediates proliferation and differentiation signals. The cytoplasmic region of G-CSFR carries four tyrosine residues in its C-terminal half. We constructed mutant receptors in which each tyrosine residue of G-CSFR was mutated to phenylalanine. Two mutant receptors (Tyr703 and Tyr728) neither transduced the growth-inhibitory signal nor induced the neutrophil-specific myeloperoxidase (MPO) gene. The Tyr703 mutant did not induce morphological changes in cells, whereas transformants expressing the Tyr728 mutant adhered to plates with a macrophage-like morphology upon G-CSF stimulation. Mutation of the most distal tyrosine residue (Tyr763) abolished the ability of G-CSFR to stimulate the tyrosine phosphorylation of a cellular protein with an M(r) of 54 kDa. These results indicated that the regions around the three tyrosine residues of G-CSFR play essential and distinct roles in signal transduction.  相似文献   

17.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.  相似文献   

18.
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight mutants were successfully generated and purified, five of which (H142T, M489V, M542C, M542I, and M542V) were found to be inactive under various assay conditions. The H142K mutant was moderately altered in all kinetic parameters to a similar extent. In addition, the mutant was more thermo-labile than wild type enzyme. The E143A mutant increased the Km value more than 20-fold while other parameters were not significantly changed. All mutations carried out on residue M542 inactivated the enzyme. Though showing a single band on SDS-PAGE, the M542C mutant lost its native tertiary structure and was aggregated. Except M542C, each of the other mutants showed a secondary structure similar to that of wild type enzyme. Although all the inactive mutants were able to bind FAD, the mutants M489V and M542C showed a very low affinity for FAD. None of the active mutants constructed was strongly resistant to three tested herbicides. Taken together, the results suggest that the residues of H142, E143, M489, and M542 are essential for catalytic activity. Furthermore, it seems that H142 residue is involved in stabilizing the dimer interaction, while E143 residue may be involved in binding with substrate pyruvate. The data from the site-directed mutagenesis imply that the constructed homology model of tobacco AHAS is realistic.  相似文献   

19.
The mannitol permease, or D-mannitol-specific enzyme II of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) of Escherichia coli, both transports and phosphorylates its substrate. Previous analyses of the amino acid sequences of PTS permeases specific for various carbohydrates in different species of bacteria revealed several regions of similarity. The most highly conserved region includes a GIXE motif, in which the glutamate residue is completely conserved among the permeases that contain this motif. The corresponding residue in the E. coli mannitol permease is Glu-257, which is located in a large putative cytoplasmic loop of the transmembrane domain of the protein. We used site-directed mutagenesis to investigate the role of Glu-257. The properties of proteins with mutations at position 257 suggest that a carboxylate side chain at this position is essential for mannitol binding. E257A and E257Q mutant proteins did not bind mannitol detectably, while the E257D mutant could still bind this substrate. Kinetic studies with the E257D mutant protein also showed that a glutamate residue at position 257 of this permease is specifically required for efficient mannitol transport. While the E257D permease phosphorylated mannitol with kinetic parameters similar to those of the wild-type protein, the Vmax for mannitol uptake by this mutant protein is less than 5% that of the wild type. These results suggest that Glu-257 of the mannitol permease and the corresponding glutamate residues of other PTS permeases play important roles both in binding the substrate and in transporting it through the membrane.  相似文献   

20.
Huang P  Visiers I  Weinstein H  Liu-Chen LY 《Biochemistry》2002,41(40):11972-11980
Activation of rhodopsin and monoamine G protein-coupled receptors (GPCRs) has been proposed to involve in part the disruption of a conserved E6.30-R3.50 ionic interaction between transmembrane segments (TMs) 3 and 6. However, this interaction does not occur in the opioid receptors, which have L275 at 6.30. On the basis of our findings that mutations of T6.34(279) to K and D produced, respectively, a constitutively active and an inactive form of the mu opioid receptor, we previously suggested that the functional role of the 6.30(275) residue could be assumed by T6.34(279), but the interplay between residues at positions 6.30 and 6.34 remained unresolved. In this study, we examined the effects of introducing an E in position 6.30(275) of the wild type (WT) and of the T6.34(279) mutants of the mu opioid receptor to compare the participation of the 6.30 locus in molecular events during activation in this receptor with its role in other GPCRs. The L6.30(275)E and the L6.30(275)E/T6.34(279)D mutants displayed no constitutive activity and could not be activated by the agonist DAMGO or morphine. The L6.30(275)E/T6.34(279)K mutant had some constitutive activity, but much less than the T6.34(279)K mutant, and could be activated by both agonists. The rank order of affinity for the agonist DAMGO is as follows: T6.34(279)K > WT congruent with L6.30(275)E/T6.34(279)K > L6.30(275)E congruent with T6.34(279)D > L6.30(275)E/T6.34(279)D; however, all constructs have a similar affinity for the antagonist [(3)H]diprenorphine. These data are interpreted in the context of interactions with the conserved R3.50(165) in TM3. When L6.30(275) is mutated to E, the favorable E6.30(275)-R3.50(165) interaction stabilizes an inactive state, as in rhodopsin, and hence reduces the activities of T6.34(279) mutants. Thus, the mu opioid receptor is shown to be different from rhodopsin and monoamine GPCRs, of which the WTs with native E6.30 can be activated, and the 6.34D or 6.34K mutants display enhanced constitutive activities. Our molecular modeling results suggest that some specific differences in local geometry at the cytoplasmic ends of TM5 and TM6 may account in part for the observed differences in the molecular mechanisms of receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号