首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
It has been suggested that submerged aquatic plants can influence the nutritional quality of the periphyton which grows on their surfaces, making it more nutritious for grazing invertebrates, particularly snails. In return, these grazers might preferentially feed on the periphyton and clear the plants of a potential competitor, with the plants and grazers both gaining from this mutualistic relationship. A highly replicated experiment was conducted, in which the nature of the plant (isoetid and elodeid types compared with similar-shaped inert substrata), the nutrient loading, and the influence of periphyton grazers (the bladder snail, Physa fontinalis) of similar size and history were controlled. Plant growth and survival significantly increased in the presence of the periphyton grazer. Whilst the presence of the grazers had the largest influence on periphyton abundance, nutrient availability and plant type also had effects. Plant type had little influence on the nutritional quality of the periphyton measured as carbohydrate, protein and C:N. Effects of treatment on snail growth, and the timing and extent of snail reproduction disappeared when they were compared with the quantity of periphyton available. There was no evidence of enhanced grazer success in the presence of the live plants compared with inert substrata. Although submerged plants affect the growth and reproduction of the grazers which feed on their surfaces, through differences in the amount of periphyton which grows there, we found no evidence that they manipulate the periphyton to encourage such grazers. Received: 1 September 1998 / Accepted: 12 May 1999  相似文献   

2.
This study investigates whether the process of pressing and drying a macrophyte host affects community structure and composition of epiphytic diatom communities. Epiphytic diatoms on submerged macrophytes from carbonate rivers and streams in southern Bavaria, Germany were sampled in order to study community structure and composition. Simultaneously, a specimen of the submerged macrophyte was taken to create a collection of dried plants. After 6months of preservation, diatom samples were taken from the herbarium macrophytes. Detrended correspondence analysis, diversity and evenness results indicate that recent and dried communities are indistinguishable. These results suggest that epiphytic diatom communities sampled from historic herbarium macrophytes can be utilised as bioindicators to assess former water quality.  相似文献   

3.
Increasing atmospheric CO2 concentration ([CO2]) may alter plant community structure. The long-term responses of a semi-natural grassland community to elevated [CO2] and different cutting regimes were investigated. During four years the grassland was exposed in situ to a mean [CO2] of 660 ppm using Free-Air CO2 Enrichment (FACE) and harvested once or twice per season. Under elevated [CO2], annual community biomass production was stimulated significantly only in the fourth year of investigation. Functional plant groups responded differentially to CO2 enrichment causing a clear shift in botanical composition from 1999 to 2002 towards a higher proportion of legumes under elevated [CO2] and two harvests per year, respectively. Photosynthetic capacity was not affected by higher [CO2] in the legume Lotus corniculatus but downregulated in the monocot Bromus erectus. Under elevated [CO2] the nitrogen content was lower in all functional plant groups, though C/N ratio was enhanced significantly only in grasses and non-leguminous dicots. In this nutrient-poor grassland community, legumes exhibit a higher competitiveness under elevated [CO2] due to their ability of symbiotic N2-fixation.Steigende atmosphärische CO2 Konzentrationen ([CO2]) können das Artengefüge von Pflanzengemeinschaften verändern. In der vorliegenden Studie wurden die langfristigen Reaktionen eines naturnahen Kalkmagerrasens auf eine [CO2] Erhöhung und verschiedene Schnittfrequenzen untersucht. Mittels eines FACE (F ree A ir CO2E nrichment) Systems wurde das untersuchte Graslandökosystem 4 Jahre lang in-situ einer mittleren [CO2] von 660 ppm ausgesetzt und ein- bzw. zweimal pro Jahr gemäht. Eine signifikante Steigerung der jährlichen Biomasseproduktion durch erhöhtes CO2 wurde erst im vierten Untersuchungsjahr beobachtet. Die funktionellen Pflanzengruppen reagierten unterschiedlich auf die [CO2] Erhöhung, wodurch sich von 1999 bis 2002 sowohl unter erhöhtem CO2 als auch bei 2 Ernten pro Jahr die Zusammensetzung der Pflanzengemeinschaft zu einem höheren Anteil von Leguminosen verschob. Die Photosynthesekapazität der Leguminose Lotus corniculatus wurde durch erhöhtes CO2 nicht beeinflusst, während sie bei der Monokotyle Bromus erectus herabgesetzt wurde. Die [CO2] Erhöhung führte in allen funktionellen Pflanzengruppen zu einem geringeren Stickstoffgehalt, jedoch war das C/N Verhältnis nur bei Gräsern und nicht-leguminosen Dikotylen signifikant erhöht. Die Fähigkeit zur symbiontischen Stickstofffixierung stärkt die Konkurrenzkraft der Leguminosen in der untersuchten nährstoffarmen Pflanzengemeinschaft.  相似文献   

4.
Nesting seabirds import marine-derived nutrients into terrestrial food webs, affecting invertebrate abundance and community composition directly, through provision of decaying animal matter as a food source, and indirectly through effects on vegetation and prey abundance. Invertebrates have shown strong responses to seabird presence in some, but not all, ecosystems previously studied. In contrast to mainland range contractions, New Zealand’s subantarctic islands retain abundant seabird populations. We sampled ground invertebrates on mammal-free Adams Island, using pitfall traps. We surveyed sites in two vegetation types (tussock and forest) with either no nesting seabirds or nesting colonies of Gibson’s wandering albatross, sooty shearwaters or white-headed petrels. We collected 11 invertebrate orders and identified 20 Coleoptera species or higher taxa. The carrion beetle, Paracatops antipoda comprised over 50 % of Coleoptera individuals collected. P. antipoda was more abundant in forest than tussock and was positively associated with sooty shearwaters and negatively associated with white-headed petrels when compared with bird-free sites using a Poisson generalized linear model. Sooty shearwaters were also associated with elevated abundance of several herbivorous and invertebrate decomposer taxa. Nesting seabirds do appear to influence invertebrate community composition on Adams Island, but the direction of this effect appears to be taxa-specific. Further sampling with spatial replication of colonies is required to determine the extent to which these apparent taxa-specific responses are consistent across colonies and habitats.  相似文献   

5.
Most investigations of biogenic habitat provision consider the promotion of local biodiversity by single species, yet habitat-forming species are often themselves components of diverse assemblages. Increased prevalence of anthropogenic changes to assemblages of habitat-forming species prompts questions about the importance of facilitator biodiversity to associated organisms. We used observational and short-term (30 days) manipulative studies of an intertidal seaweed system to test for the implications of changes in four components of biodiversity (seaweed species richness, functional group richness, species composition, and functional group composition) on associated small mobile invertebrate epifauna. We found that invertebrate epifauna richness and abundance were not influenced by changes in seaweed biodiversity. Invertebrate assemblage structure was in most cases not influenced by changes in seaweed biodiversity; only when algal assemblages were composed of monocultures of species with ‘foliose’ morphologies did we observe a difference in invertebrate assemblage structure. Correlations between algal functional composition and invertebrate assemblage structure were observed, but there was no correlation between algal species composition and invertebrate assemblage structure. These results suggest that changes in seaweed biodiversity are likely to have implications for invertebrate epifauna only under specific scenarios of algal change.  相似文献   

6.
Many aspects of animal behaviour are affected by real‐time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti‐predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti‐predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator‐driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide‐ranging exploration of these issues in bat behaviour. We first cover the basic predator‐prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape‐related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day‐active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much‐needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate‐zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent with the idea that predation risk affects choice of movement paths and feeding areas by temperate‐zone bats, as well as the timing of roost departures. The behaviour of tropical bats, on the other hand, seems more generally influenced by predators; this is especially true for tropical nectarivores and frugivores, but also for insectivorous bats. Presumably there are more serious predators on bats in the tropics (e.g. specialized raptors or carnivorous bats), but the identity of these predators is unclear. More information is needed to assess fully the influence of predators on bat behaviour. There is much need for work on the ways in which bats perceive predators via auditory, visual, and olfactory cues, and whether bats have some knowledge of the risks posed by different predators. Also needed is information on how predators attack bats and how bats react to attacking predators. Difficult to obtain, but of critical value, will be information on the nature of the predation risk experienced by bats while away from roosts and during the full darkness of night.  相似文献   

7.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   

8.
Seasonal fluctuation of allochthonous subsidies influences food web structure and dynamics in recipient communities. This study investigated whether aquatic subsidies influence the dynamics of insectivorous birds in entire catchment. We estimated the prey biomass and bird density in riparian and upland habitats in three catchments in temperate deciduous forests in Hokkaido, Japan. Aquatic prey was found only in riparian forests and the biomass peaked in early spring, while terrestrial prey was equally distributed between habitats and increased in biomass in late spring. Bird density was higher in riparian than in upland forests before bud break, when the biomass of aquatic insects peaked, but was similar in both forests during the rest of the seasons. These results suggest that aquatic prey subsidies are used not only by birds inhabiting riparian forests, but also by birds associated with upland forests. Aquatic prey subsidies may be particularly important in the spring as a critical food resource for survival and the breeding activities of birds, thereby, influencing the population dynamics of bird communities.  相似文献   

9.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

10.
Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta‐analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above‐mentioned global environmental change components. We found that elevated temperature and CO2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: = 0.051; increased precipitation: = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (= 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO2 enrichment, may further increase the spread of invasive plants in the future.  相似文献   

11.
Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment.  相似文献   

12.
Abstract Long‐distance plant dispersal explains the rapid northward migration of plant species during the Holocene but the mechanisms by which it occurred are poorly understood. Given that Native Americans spread numerous cultigens over thousands of kilometres during the late Holocene, I examined historical literature for evidence of non‐cultigen dispersal or cultivation in North America's eastern woodlands. Cultivation references are included because a strong relationship between dispersal and indigenous flora husbandry is assumed. Sixty‐seven texts describing Native American lifestyle, cultural activities, and land management reported some form of plant use. Most accounts, however, focus on cultigen production or the use of indigenous flora for medicine or food without mention of dispersal. Twenty‐four of the texts described the trade, transport, or cultivation of plants indigenous to eastern North American woodlands. Most accounts focus on the informal production of food plants, especially trees and shrubs. Confounding these reports was clear evidence of observer bias, limited botanical knowledge, acculturation, and secrecy by Native American informants. Because of these shortcomings, the likelihood of widespread long‐distance plant dispersal by Native Americans could not be determined using historical literature. This activity was either not widespread or was not observed by, or revealed to, Europeans. To adequately test the Native American plant dispersal hypothesis, direct evidence from other sources (e.g. archaeobotancial data) will be required.  相似文献   

13.
14.
Ecological stoichiometry generally assumes that heterotrophs have a higher degree of elemental homeostasis than autotrophs. Differences between fixed consumer nutrient requirements and nutrients available in resources allow prediction of the intensity of nutrient recycling ensured by heterotrophs. Despite their fundamental role in detritus decomposition, extremely few data are currently available on fungal elemental composition. In this study, we quantified the degree of elemental homeostasis of aquatic hyphomycetes used as model organisms. Contrary to metazoans, but similar to plants, aquatic hyphomycetes exhibited highly plastic elemental compositions. Mycelium also reached far higher C/nutrient ratios than reported for bacteria. Our results suggest that non-homeostasis of fungi should be explicitly included in stoichiometric models dealing with nutrient recycling, and that the discrepancy in homeostasis between some bacterial strains and fungi should certainly be considered when investigating interactions between both groups of decomposers.  相似文献   

15.
Species-rich plant communities appear to defy the competitive exclusion principle, showing relatively few obvious niche differences between coexisting species. Here we explore alternatives to the potentially endless search for new niche axes. Spatial aggregation in populations, non-transitive competition, episodes of density-independent mortality and various non-equilibrium theories allow trophically similar species to coexist for extended periods. In perennial plants or annuals with a seed pool, asynchrony between species in recruitment permits coexistence by the 'storage effect'. There is increasing evidence that species-specific herbivores and pathogens regulate populations of tropical trees to low levels at which competitive exclusion does not occur. The wide variety of alternatives to niche differentiation lead us to question whether plants need occupy different niches to coexist.  相似文献   

16.
1. Both local and regional processes simultaneously control species assemblages depending on spatial habitat configuration. In dendritic networks like streams, the unique spatial arrangement of habitats produces various combinations of local habitat size and isolation. Stream invertebrate assemblages could therefore be controlled by different combinations of local and regional processes, depending on their location in the network. 2. Using quantile regression, we investigated how local habitat size, local environmental conditions and spatial isolation influenced variation in assemblage composition. Adult Trichoptera and benthic macroinvertebrate assemblages were represented by non‐metric multidimensional scaling (NMDS) ordination scores, as were local environmental conditions, in four headwater stream networks in New Zealand. 3. With increasing local habitat size, there was a decrease in variation in assemblage composition (NMDS scores) of both adult Trichoptera and benthic macroinvertebrates. This relationship between habitat size and assemblage variation was related to local habitat conditions at the upper limit of assemblage variability and spatial isolation at the lower limit of assemblage variability, for both adult Trichoptera and benthic assemblages, indicating joint local and regional controls on stream invertebrate assemblages. 4. The relationships between local assemblages and their neighbours, based on community similarity scores, differed between benthic macroinvertebrates and adult Trichoptera. For benthic assemblages, the larger the stream, the more similar assemblages were to neighbouring assemblages, whereas there was no consistent relationship between assemblage similarity and stream size for adult Trichoptera. This difference in structuring could be attributed to contrasting spatial influences linked to the different dispersal modes of adults and larvae. However, because adult and benthic assemblages are not independent, the influence of life stage on spatial distribution is difficult to determine (i.e. it is essentially a ‘chicken and egg’ argument). 5. Overall, our approach using quantile regression to evaluate limit responses, rather than regressions on means, has highlighted the joint importance of local habitat and spatial processes in structuring stream invertebrate assemblages. Furthermore, we have provided evidence for the importance of the spatial network arrangement and interactions between life stages and dispersal processes, in structuring stream assemblages.  相似文献   

17.
With the species composition and/or functioning of many ecosystems currently changing due to anthropogenic drivers it is important to understand and, ideally, predict how changes in one part of the ecosystem will affect another. Here we assess if vegetation composition or soil chemistry best predicts the soil microbial community. The above and below-ground communities and soil chemical properties along a successional gradient from dwarf shrubland (moorland) to deciduous woodland (Betula dominated) were studied. The vegetation and soil chemistry were recorded and the soil microbial community (SMC) assessed using Phospholipid Fatty Acid Extraction (PLFA) and Multiplex Terminal Restriction Fragment Length Polymorphism (M-TRFLP). Vegetation composition and soil chemistry were used to predict the SMC using Co-Correspondence analysis and Canonical Correspondence Analysis and the predictive power of the two analyses compared. The vegetation composition predicted the soil microbial community at least as well as the soil chemical data. Removing rare plant species from the data set did not improve the predictive power of the vegetation data. The predictive power of the soil chemistry improved when only selected soil variables were used, but which soil variables gave the best prediction varied between the different soil microbial communities being studied (PLFA or bacterial/fungal/archaeal TRFLP). Vegetation composition may represent a more stable ‘summary’ of the effects of multiple drivers over time and may thus be a better predictor of the soil microbial community than one-off measurements of soil properties.  相似文献   

18.
The northward and upward movement of the tree line and gradual replacement of lichens with vascular plants associated with increasing temperatures and nutrient availability may change the reindeer pastures in Northern Fennoscandia. The productivity of reindeer forage will most probably increase, but their protein (nitrogen) concentrations may decrease because of higher temperatures and CO2 concentration. In the long term, the nutritive value of forage will depend on the mineralization rate and nutrient uptake from the soil. Enhanced UV-B is likely to increase the concentration of phenolics, decreasing forage quality and choice, but reindeer may adapt to increased phenolics. Increased winter precipitation, the occurrence of ice layers, deeper snow cover, and the appearance of molds beneath the snow cover may reduce the availability and/or quality of reindeer forage, but prolongation of snowless periods might have the opposite effect. The net balance of negative and positive effects will vary regionally depending on the climate, bedrock, vegetation, reindeer herding systems and socio-political factors. Multidisciplinary research is needed most importantly on the effects of the changing winter climate on reindeer forage, and the effect of modified forage quality on reindeer physiology.
Minna TurunenEmail:
  相似文献   

19.
de Jager ML  Dreyer LL  Ellis AG 《Oecologia》2011,166(2):543-553
The co-occurrence of plant species within a community is influenced by local deterministic or neutral processes as well as historical regional processes. Floral trait distributions of co-flowering species that share pollinators may reflect the impact of pollinator preference and constancy on their assembly within local communities. While pollinator sharing may lead to increased visitation rates for species with similar flowers, the receipt of foreign pollen via interspecific pollinator movements can decrease seed set. We investigated the pattern of community flower colour assembly as perceived by native honeybee pollinators within 24 local assemblages of co-flowering Oxalis species within the Greater Cape Floristic Region, South Africa. To explore the influence of pollinators on trait assembly, we assessed the impact of colour similarity on pollinator choices and the cost of heterospecific pollen receipt. We show that flower colour is significantly clustered within Oxalis communities and that this is not due to historical constraint, as flower colour is evolutionarily labile within Oxalis and communities are randomly structured with respect to phylogeny. Pollinator observations reveal that the likelihood of pollinators switching between co-flowering species is low and increases with flower colour similarity. Interspecific hand pollination significantly reduced seed set in the four Oxalis species we investigated, and all were dependant on pollinators for reproduction. Together these results imply that flower colour similarity carries a potential fitness cost. However, pollinators were highly flower constant, and remained so despite the extreme similarity of flower colour as perceived by honeybees. This suggests that other floral traits facilitate discrimination between similarly coloured species, thereby likely resulting in a low incidence of interspecific pollen transfer (IPT). If colour similarity promotes pollinator attraction at the community level, the observed clustering of flower colour within communities might result from indirect facilitative interactions.  相似文献   

20.

Background  

The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号