首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurement of Mercury Methylation in Lake Water and Sediment Samples   总被引:11,自引:7,他引:4       下载免费PDF全文
The production of various eremophilane-type sesquiterpenes by Penicillium roqueforti strains has allowed us to propose a biochemical pathway for PR toxin synthesis. A time-course study of P. roqueforti metabolite production by high-performance liquid chromatography was performed to check this hypothetical pathway. The results obtained suggested that eremofortin C was the direct precursor of PR toxin in the P. roqueforti cell. Attempts to determine the amount of PR toxin in the mycelium failed. It was shown that the absence of PR toxin in mycelium was due to its instability during the extraction procedure.  相似文献   

2.
The PR oxidase, an extracellular enzyme, involved in the conversion of PR toxin into PR acid, was purified from the culture broth of Penicillium roqueforti ATCC 48936. The enzyme has a pI of 4.5 and a molecular mass of approximately 88 kDa, and it is a monomer. The optimum pH for this enzyme is ca. 4.0, and the optimum temperature is 50°C.  相似文献   

3.
α-Amylase (EC 3.2.1.1) was excreted by Calvatia gigantea in liquid growth media containing different sources of starch. Among the factors affecting enzyme production in shake flasks were the type and the concentration of starch and the nitrogen source supplied. Optimum cultural conditions for maximum enzyme production were: soluble starch concentration, 5%; inoculum size, 3.75 × 105 conidia per ml; 5-day cultivation time at 28 to 30°C. The observed maximum yield of 81.3 U of saccharifying enzyme activity per ml of growth medium was the highest ever reported in the literature for submerged cultures. Partially purified enzyme functioned optimally at pH 4.5 to 5.5 and 53 to 58°C. The activation energy of enzymic hydrolysis of starch in the range of 20 to 40°C was 8,125 cal/mol (ca. 3.41 × 104 J). The apparent Km value of the enzyme at 25°C was 7.68 × 10−4 g/ml. Some of the properties of the enzyme under investigation were similar to those of α-amylases excreted from molds producing large amounts of the enzyme.  相似文献   

4.
C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD+ (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.  相似文献   

5.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

6.
Stationary liquid cultures of Fusarium tricinctum NRRL 3299 (synonym: F. sporotrichioides) produce T-2 toxin, neosolaniol, diacetoxyscirpenol, and HT-2 toxin when cultured on peptone-enriched Czapek Dox medium. At 15 and 27°C, maximum T-2 toxin yield (265 and 50 μg/ml) was found after 10 to 14 and 7 days, respectively. The T-2 toxin in the culture medium was metabolized rapidly at 27°C and slowly at 15°C. Addition of 0.025% (wt/vol) sorbic acid to the medium resulted in an increased production of trichothecenes at 15°C (400 μg of T-2 per ml after 14 days). Trichothecenes in the culture liquid were determined by the brine shrimp bioassay and physicochemical analysis. The brine shrimp assay was improved by using modern bioassay equipment, including tissue culture trays and multipipettes, and by a standardized approach with positive and negative controls. The physicochemical analysis was based on adsorption of the trichothecenes onto Amberlite XAD-2 columns, derivatization with trifluoroacetic anhydride followed by capillary gas chromatography, and identification by mass spectrometry (as many as 17 trichothecenes were detected in the culture medium). The brine shrimp assay offers an interesting monitoring system for the quantitation of T-2 toxin and should be useful for studies on production of this toxin in culture. Specific information on less toxic trichothecenes, however, requires a more time-consuming chemical analysis.  相似文献   

7.
The noncharacterized protein CLOSCI_02528 from Clostridium scindens ATCC 35704 was characterized as D-psicose 3-epimerase. The enzyme showed maximum activity at pH 7.5 and 60°C. The half-life of the enzyme at 50°C was 108 min, suggesting the enzyme was relatively thermostable. It was strictly metal-dependent and required Mn2+ as optimum cofactor for activity. In addition, Mn2+ improved the structural stability during both heat- and urea-induced unfolding. Using circular dichroism measurements, the apparent melting temperature (T m) and the urea midtransition concentration (C m) of metal-free enzyme were 64.4°C and 2.68 M. By comparison, the Mn2+-bound enzyme showed higher T m and C m with 67.3°C and 5.09 M. The Michaelis-Menten constant (K m), turnover number (k cat), and catalytic efficiency (k cat/K m) values for substrate D-psicose were estimated to be 28.3 mM, 1826.8 s−1, and 64.5 mM−1 s−1, respectively. The enzyme could effectively produce D-psicose from D-fructose with the turnover ratio of 28%.  相似文献   

8.
The production of various eremophilane-type sesquiterpenes by Penicillium roqueforti strains has allowed us to propose a biochemical pathway for PR toxin synthesis. A time-course study of P. roqueforti metabolite production by high-performance liquid chromatography was performed to check this hypothetical pathway. The results obtained suggested that eremofortin C was the direct precursor of PR toxin in the P. roqueforti cell. Attempts to determine the amount of PR toxin in the mycelium failed. It was shown that the absence of PR toxin in mycelium was due to its instability during the extraction procedure.  相似文献   

9.
Two thermostable lipases were isolated and characterized from Thermosyntropha lipolytica DSM 11003, an anaerobic, thermophilic, alkali-tolerant bacterium which grows syntrophically with methanogens on lipids such as olive oil, utilizing only the liberated fatty acid moieties but not the glycerol. Lipases LipA and LipB were purified from culture supernatants to gel electrophoretic homogeneity by ammonium sulfate precipitation and hydrophobic interaction column chromatography. The apparent molecular masses of LipA and LipB determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 50 and 57 kDa, respectively. The temperature for maximal activity of LipA and LipB was around 96°C, which is, so far as is known, the highest temperature for maximal activity among lipases, and the pH optima for growth determined at 25°C (pH25°C optima) were 9.4 and 9.6, respectively. LipA and LipB at 100°C and pH25°C 8.0 retained 50% activity after 6 and 2 h of incubation, respectively. Both enzymes exhibited high activity with long-chain fatty acid glycerides, yielding maximum activity with trioleate (C18:1) and, among the p-nitrophenyl esters, with p-nitrophenyl laurate. Hydrolysis of glycerol ester bonds occurred at positions 1 and 3. The activities of both lipases were totally inhibited by 10 mM phenylmethylsulfonyl fluoride and 10 mM EDTA. Metal analysis indicated that both LipA and LipB contain 1 Ca2+ and one Mn2+ ion per monomeric enzyme unit. The addition of 1 mM MnCl2 to dialyzed enzyme preparations enhanced the activities at 96°C of both LipA and LipB by threefold and increased the durations of their thermal stability at 60°C and 75°C, respectively, by 4 h.  相似文献   

10.
A pilot-scale pasteurizer operating under validated turbulent flow (Reynolds number, 11,050) was used to study the heat sensitivity of Mycobacterium avium subsp. paratuberculosis added to raw milk. The ATCC 19698 type strain, ATCC 43015 (Linda, human isolate), and three bovine isolates were heated in raw whole milk for 15 s at 63, 66, 69, and 72°C in duplicate trials. No strains survived at 72°C for 15 s; and only one strain survived at 69°C. Means of pooled D values (decimal reduction times) at 63 and 66°C were 15.0 ± 2.8 s (95% confidence interval) and 5.9 ± 0.7 s (95% confidence interval), respectively. The mean extrapolated D72°C was <2.03 s. This was equivalent to a >7 log10 kill at 72°C for 15 s (95% confidence interval). The mean Z value (degrees required for the decimal reduction time to traverse one log cycle) was 8.6°C. These five strains showed similar survival whether recovery was on Herrold's egg yolk medium containing mycobactin or by a radiometric culture method (BACTEC). Milk was inoculated with fresh fecal material from a high-level fecal shedder with clinical Johne's disease. After heating at 72°C for 15 s, the minimum M. avium subsp. paratuberculosis kill was >4 log10. Properly maintained and operated equipment should ensure the absence of viable M. avium subsp. paratuberculosis in retail milk and other pasteurized dairy products. An additional safeguard is the widespread commercial practice of pasteurizing 1.5 to 2° above 72°C.  相似文献   

11.
A thermoanaerobe (Thermoanaerobacter sp.) grown in TYE-starch (0.5%) medium at 60°C produced both extra- and intracellular pullulanase (1.90 U/ml) and amylase (1.19 U/ml) activities. Both activities were produced at high levels on a variety of carbon sources. The temperature and pH optima for both pullulanase and amylase activities were 75°C and pH 5.0, respectively. Both the enzyme activities were stable up to 70°C (without substrate) and at pH 4.5 to 5.0. The half-lives of both enzyme activities were 5 h at 70°C and 45 min at 75°C. The enzyme activities did not show any metal ion activity, and both activities were inhibited by β- and γ-cyclodextrins but not by α-cyclodextrin. A single amylolytic pullulanase responsible for both activities was purified to homogeneity by DEAE-Sepharose CL-6B column chromatography, gel filtration using high-pressure liquid chromatography, and pullulan-Sepharose affinity chromatography. It was a 450,000-molecular-weight glycoprotein composed of two equivalent subunits. The pullulanase cleaved pullulan in α1,6 linkages and produced multiple saccharides from cleavage of α-1,4 linkages in starch. The Kms for pullulan and soluble starch were 0.43 and 0.37 mg/ml, respectively.  相似文献   

12.
We found the occurrence of thermophilic reversible γ-resorcylate decarboxylase (γ-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of γ-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50°C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of kcat/Km (mΜ−1·s−1) for γ-resorcylate and resorcinol at 30°C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes (graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the γ-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and γ-RDC probably catalyzes a reaction just before the hydroxylase in it does.  相似文献   

13.
Magnolia sinica is one of the most endangered Magnoliaceae species in China. Seed biology information concerning its long-term ex situ conservation and utilization is insufficient. This study investigated dormancy status, germination requirements and storage behavior of M. sinica. Freshly matured seeds germinated to ca. 86.5% at 25/15 °C but poorly at 30 °C; GA3 and moist chilling promoted germination significantly at 20 °C. Embryos grew at temperatures (alternating or constant) between 20 °C and 25 °C, but not at 5 °C or 30 °C. Our results indicate that M. sinica seeds possibly have non-deep simple morphophysiological dormancy (MPD). Seeds survived desiccation to 9.27% and 4.85% moisture content (MC) as well as a further 6-month storage at −20 °C and in liquid nitrogen, including recovery in vitro as excised embryos. The established protocol ensured that at least 58% of seedlings were obtained after both cold storage and cryopreservation. These results indicate that both conventional seed banking and cryopreservation have potential as long-term ex situ conservation methods, although further optimized approaches are recommended for this critically endangered magnolia species.  相似文献   

14.
Improving enzyme thermostability is of importance for widening the spectrum of application of enzymes. In this study, a structure-based rational design approach was used to improve the thermostability of a highly active, wide-pH-range-adaptable, and stable endopolygalacturonase (PG8fn) from Achaetomium sp. strain Xz8 via the optimization of charge-charge interactions. By using the enzyme thermal stability system (ETSS), two residues—D244 and D299—were inferred to be crucial contributors to thermostability. Single (D244A and D299R) and double (D244A/D299R) mutants were then generated and compared with the wild type. All mutants showed improved thermal properties, in the order D244A < D299R < D244A/D299R. In comparison with PG8fn, D244A/D299R showed the most pronounced shifts in temperature of maximum enzymatic activity (Tmax), temperature at which 50% of the maximal activity of an enzyme is retained (T50), and melting temperature (Tm), of about 10, 17, and 10.2°C upward, respectively, with the half-life (t1/2) extended by 8.4 h at 50°C and 45 min at 55°C. Another distinguishing characteristic of the D244A/D299R mutant was its catalytic activity, which was comparable to that of the wild type (23,000 ± 130 U/mg versus 28,000 ± 293 U/mg); on the other hand, it showed more residual activity (8,400 ± 83 U/mg versus 1,400 ± 57 U/mg) after the feed pelleting process (80°C and 30 min). Molecular dynamics (MD) simulation studies indicated that mutations at sites D244 and D299 lowered the overall root mean square deviation (RMSD) and consequently increased the protein rigidity. This study reveals the importance of charge-charge interactions in protein conformation and provides a viable strategy for enhancing protein stability.  相似文献   

15.
The lignocellulose-degrading actinomycete Streptomyces viridosporus T7A produced an extracellular esterase when grown in a mineral salts-yeast extract medium. Extracellular esterase activity was first detected during the late stationary phase and typically followed the appearance of intracellular activity. When the organism was grown in lignocellulose-supplemented medium, esterase activity was not increased, but lignocellulose-esterified p-coumaric acid and vanillic acid were released into the medium. Polyacrylamide gels showed that several extracellular esterases differing in substrate specificity were produced. Ultrafiltration was used to concentrate the esterase prior to purification. Activity was recovered mostly in the molecular weight fraction between 10,000 and 100,000. Concentrated esterase was further purified by DEAE-Sepharose anion-exchange chromatography to a specific activity 11.82 times greater than that in the original supernatant. There were seven detectable esterase active proteins in the partially purified enzyme solution. Three were similar esterases that may be isoenzymes. The partially purified esterase had a pH optimum for activity of 9.0, a temperature optimum of 45 to 50°C, and a Km and Vmax of 0.030 mM and 0.097 μmol/min per ml, respectively, when p-nitrophenyl butyrate was the substrate. The enzyme was unstable above 40°C but retained activity when stored at 4 or −20°C. It lost some activity (20%) when lyophilized. Substrate specificity assays showed that it hydrolyzed ester linkages of p-nitrophenyl butyrate, α-naphthyl acetate, α-naphthyl butyrate, and lignocellulose. Vanillic and p-coumaric acids were identified as products released from lignocellulose. The enzyme is thought to be a component of the lignocellulose-degrading enzyme system of S. viridosporus.  相似文献   

16.
Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role.  相似文献   

17.
Wu MX  Wedding RT 《Plant physiology》1987,85(2):497-501
The effect of temperature in the range from 10 to 35°C on various characteristics of phosphoenolpyruvate carboxylase from the leaves of a CAM plant, Crassula argentea and a C4 plant Zea mays shows a number of different effects related to the environment in which these distinct types of metabolic specialization normally operate. The Arrhenius plot of Vmax for the two enzyme forms shows that the CAM enzyme has a linear increase with temperature while the C4 enzyme has an inflection at 27°C implying a conformational or aggregational change in the enzyme or a shift in reaction mechanism to one requiring a lower activation energy. The Arrhenius plot of Km for the two enzymes reveals the startling fact that at temperatures above 20°C an increasing temperature causes an increase in KmPEP for the CAM enzyme while the C4 enzyme displays a decreased Km as the temperature increases. The inhibitory effect of 5 millimolar malate also shows opposite trends for the two enzymes. For the CAM enzyme the percent inhibition by malate increases from essentially none at 15°C to 70% at 35°C. For the C4 enzyme the percent inhibition drops from about 60% at 20°C to 2% at 30°C. Similar opposite behavior of the two enzymes is found with the Ki for malate. Pretreatment at high temperatures for periods up to 2 hours was found to result in differences similar to those described above if the treated enzyme were subsequently assayed at 25°C.  相似文献   

18.
The influence of carbon, nitrogen, and phosphate concentrations on growth and proteinase production by Pseudomonas fluorescens 32A was examined. In mineral salts medium containing dialyzed skim milk supernatant as an inducer, maximum growth was obtained at 1.0 and 2.5 mM orthophosphate at 20 and 5°C, respectively. At both temperatures, 5 mM orthophosphate was required for maximum proteinase production, whereas significant inhibition was found at 10 mM. Orthophosphate was the only phosphate compound able to support growth. With sodium pyruvate as the carbon source, maximum enzyme synthesis was at 100 mM carbon at both temperatures. At both 20 and 5°C maximum growth and enzyme production was found with 10 mM NH4Cl. A bioassay for available phosphate based on the growth of P. fluorescens 32A in phosphate-limited mineral salts medium showed that skim milk and skim milk supernatant contained 50 and 10 mM orthophosphate, respectively. Proteinase production in skim milk was 2.6- and 12-fold greater than that in optimal mineral salts medium at 20 and 5°C, respectively. These results suggest that proteinase production in milk does not occur as a result of nutrient limitation and may be regulated in part by milk phosphates.  相似文献   

19.
A novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeon Thermococcus kodakarensis (TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. The Km value toward pullulan was 2 mg ml−1, with a Vmax of 109 U mg−1. Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.  相似文献   

20.
Pyrococcus furiosus is a hyperthermophilic archaeon that grows optimally at 100°C by the fermentation of peptides and carbohydrates to produce acetate, CO2, and H2, together with minor amounts of ethanol. The organism also generates H2S in the presence of elemental sulfur (S0). Cell extracts contained NADP-dependent alcohol dehydrogenase activity (0.2 to 0.5 U/mg) with ethanol as the substrate, the specific activity of which was comparable in cells grown with and without S0. The enzyme was purified by multistep column chromatography. It has a subunit molecular weight of 48,000 ± 1,000, appears to be a homohexamer, and contains iron (~1.0 g-atom/subunit) and zinc (~1.0 g-atom/subunit) as determined by chemical analysis and plasma emission spectroscopy. Neither other metals nor acid-labile sulfur was detected. Analysis using electron paramagnetic resonance spectroscopy indicated that the iron was present as low-spin Fe(II). The enzyme is oxygen sensitive and has a half-life in air of about 1 h at 23°C. It is stable under anaerobic conditions even at high temperature, with half-lives at 85 and 95°C of 160 and 7 h, respectively. The optimum pH for ethanol oxidation was between 9.4 and 10.2 (at 80°C), and the apparent Kms (at 80°C) for ethanol, acetaldehyde, NADP, and NAD were 29.4, 0.17, 0.071, and 20 mM, respectively. P. furiosus alcohol dehydrogenase utilizes a range of alcohols and aldehydes, including ethanol, 2-phenylethanol, tryptophol, 1,3-propanediol, acetaldehyde, phenylacetaldehyde, and methyl glyoxal. Kinetic analyses indicated a marked preference for catalyzing aldehyde reduction with NADPH as the electron donor. Accordingly, the proposed physiological role of this unusual alcohol dehydrogenase is in the production of alcohols. This reaction simultaneously disposes of excess reducing equivalents and removes toxic aldehydes, both of which are products of fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号