首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B.T. Storey  C.P. Lee 《BBA》1973,292(3):554-565

1. Circular dichroism spectra of the cytochromes in membrane fragments derived from sonicated beef heart mitochondria have been obtained in the wavelength region 400–480 nm in which the major absorbance maxima of the heme prosthetic groups are found.

2. 2. Cytochrome oxidase in the mitochondrial membrane fragments has a band of positive ellipticity at 426 nm in the oxidized form and a pronounced band of positive ellipticity at 445 nm in the reduced form. The reduced-minus-oxidized difference molar ellipticity at 445 nm, Δ[θ]445 is 3.0·105 degree·cm−2·dmole−1 heme a for membrane-bound oxidase compared to 1.6·105 degree·cm−2·dmole−1 heme a for the purified oxidase. The membrane-bound oxidase in the reduced form also appears to have a band of negative ellipticity at 426 nm not found in the purified oxidase.

3. 3. When reduced with succinate in the presence of cyanide and oxygen, cytochrome oxidase in the membrane fragments has a positive band at 442 nm very similar to that observed with the purified oxidase.

4. 4. Cytochrome c, which has a positive band at 426 nm in the purified form when reduced, appears to have a negative band at this wavelength in the mito-chondrial membrane fragments which contributes to the pronounced negative band at 426 nm observed in the membrane fragments reduced with succinate in anaerobiosis. There is no evidence for a contribution to the CD spectra of the membrane fragments from cytochrome c1 or from cytochrome b561 in either the oxidized or the reduced form.

5. 5. Cytochrome b566 in the mitochondrial membrane fragments has no detectable CD spectrum in the oxidized form, but has a small positive band at 427 nm and a small negative band at 436 nm in the reduced form. The same CD spectrum is observed with cytochrome b566 reduced with succinate in the presence of antimycin A or 2-heptyl-4-hydroxyquinoline-N-oxide. The same increase in positive ellipticity is observed at 427 nm in the mitochondrial membrane fragments, treated with oligomycin to restore energy coupling, when cytochrome b566 is reduced with succinate in the energized membrane, as is observed in the inhibitor-treated membrane fragments. The absence of a pronounced conformational change in cytochrome b566 on energization, as revealed by its CD spectrum, favors the concept that its reduction by succinate in the energized state is due to reversed electron transport rather than an intrinsic shift in the cytochrome's midpoint redox potential.

Abbreviations: HOQNO, 2-heptyl-4-hydroxy quinoline-N-oxide; PMS, phenazine methosulfate  相似文献   


2.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


3.
K.A. Davis  Y. Hatefi  K.L. Poff  W.L. Butler 《BBA》1973,325(3):341-356

1. 1. Three b-type cytochromes (b557.5, b560, and b562.5), plus a chromophore with an absorption peak at 558 nm at 77 °K, have been found to be associated with the electron transport system of bovine heart mitochondria. The reduced minus oxidized spectra of these components at 77 °K, as well as that of cytochrome c1, have been recorded with a wavelength accuracy of ± 0.1 nm and presented to the nearest 0.5 nm. All the major and β absorption peaks of cytochromes b557.5, b560, b562.5, c1 and c have been shown by fourth derivative analysis to be present in the dithionite-reduced minus oxidized spectra of mitochondria and submitochondrial particles.

2. 2. The distribution of the above components has been studied in the four electron transfer complexes of the respiratory chain. Cytochromes b560, b562.5 and c1, as well as chromophore-558, were found to fractionate into Complex III (reduced ubiquinone-cytochrome c reductase), whereas cytochrome b557.5 was found in Complex II (succinate-ubiquinone reductase).

3. 3. Cytochrome b560 was readily reduced by NADH or succinate, but b562.5 was not reduced by substrates unless the preparation was treated with antimycin A. In antimycin-treated preparations pre-reduction of c1 with ascorbate inhibited the subsequent reduction of b562.5 by substrates. These results indicate that b560 and b562.5 correspond, respectively, to bK and bT previously described by Chance et al.14 (1970, Proc. Natl. Acad. Sci. U.S. 66, 1175–1182).

4. 4. Similar to b560, chromophore-558 can be reduced by substrates in the absence or presence of antimycin A. However, in antimycin-treated preparations, pre-reduction of c1 inhibits its subsequent reduction by substrates. This property is similar to that of b562.5.

5. 5. Cytochrome b557.5, which occurs in Complex II, appears to have a low mid-point potential. It can be reduced with dithionite and oxidized by fumarate or ubiquinone. CO treatment of dithionite-reduced b557.5 neither modified the spectrum of this cytochrome nor diminished the extent of b557.5 reoxidation by fumarate.

6. 6. Antimycin A treatment does not appear to alter the spectra of the above cytochromes. However, small amounts (< 4%) of ethanol or methanol, which are usually added to particles as solvent for antimycin A, have a pronounced effect on the peaks of cytochrome c1. The spectrum of cytochrome c1 at 77 °K as modified by 3% (v/v) ethanol is shown.

Abbreviations: ETP, non-phosphorylating electron transport particle preparation; ETPH, phosphorylating electron transport particle preparation; TMPD, tetramethylphenylenediamine; Complexes I, preparations of NADH-ubiquinone reductase; Complexes II, succinate-ubiquinone reductase; Complexes III, reduced ubiquinone-cytochrome c reductase; Complexes I-III, NADH-cytochrome c reductase; Complexes II-III, succinate-cytochrome c reductase  相似文献   


4.
Thor Arnason  John Sinclair 《BBA》1976,449(3):581-586
The involvement of OH bond breaking in the 4 dark reactions of the Kok scheme of photosynthetic oxygen evolution was investigated using Chlorella and spinach chloroplasts. When the photosynthetic material was suspended in a 2H2O based medium, the reaction rates in all 4 cases were only slightly reduced as compared to the rates observed in an H2O based medium. This was evidence that these rate processes were probably not limited by the breaking of an OH bond. Observations were also made on the yields of O2 from dark adapted Chlorella subjected to a sequence of brief saturating light flashes. The oscillating flash yield sequence observed with algae suspended in 2H2O showed greater damping of the oscillations than when the algae were suspended in H2O. A computer fit of the Kok model to these results revealed a slightly higher proportion of misses, (i.e. absorbed quanta that do not drive photochemistry) in the 2H2O case.  相似文献   

5.
2H2O (99.8%) Ringer's solution greatly reduces the twitch and tetanus of frog sartorius muscle and, as specially shown here, slows the onset features of the mechanical output of the twitch by: (a) increasing the time (LR) from stimulus to start of latency relaxation; (b) slowing the developmet of the latency relaxation, and (c) greatly decreasing the rate of onset of tension development. These changes reflect effects of 2H2O on excitation-contraction coupling and they represent the critical direct effects of 2H2O on muscle since it does not depress either the action potential or the intrinsic myofibrillar contractility. The increase in LR is attributed to slowed inward electrical propagation in the T-tubule. But the critical effect of 2H2O on frog muscle is to greatly depress mobilization of activator Ca2+. The depression of the Ca2+ mobilization and of its effects on the activation of contraction evidently result from (a) a lowered rate of release of Ca2+ from the sarcoplasmic reticulum, as indicated by the slowed development of the latency relaxation, (b) a decreased amount of Ca2+ released in a twitch, and (c) a reduced speed of diffusion of the Ca2+ to the contractile filaments. The depressed mobilization of Ca2+ is apparently the essential cause of 2H2O's general depression of twitch and tetanus output.  相似文献   

6.
《FEBS letters》1989,250(2):580-584
Small-angle neutron scattering experiments were performed in dilute aqueous solutions of chloroplast F1-ATPase. By contrast variation in 1H2O/2H2O mixtures and when using different concentrations of glycerol in 2H2O, structural information on the spatial distribution of dry protein and water was obtained. The maximum distance within latent and active CF1 was 12 nm. the shape of CF1 was globular. The total volume of CF1 was 900 nm3, and its dry volume (excluding the volume of one water molecule per two exchangeable hydrogen atoms) was 400 nm3. A volume of 670 nm3 was inaccessible to glycerol at low glycerol concentrations (less than 25%). At higher concentrations (up to 50%) a volume of 460 nm3 was excluded to glycerol. Within the resolution of our experiment (1.6 nm) there was no evidence for particular water-rich regions or of secluded water spaces or any particular places for glycerol exchange. Upon thiol activation of the latent enzyme only small changes in structure were detectable just at the limits of the experimental error. They suggest an enhancement of the surface roughness.  相似文献   

7.
(1) Cells of Rhodopseudomonas capsulata (wild-type) were grown photoheterotrophically in a turbidostat under very high and very low light intensity. Membranes were isolated from cells adapted to the respective light conditions and fractionated by sucrose density centrifugation. The molar ratios of ubiquinone and cytochromes c2, c1, b-561 and b-566 per reaction center were 3-fold to 5-fold higher in high-light than in low-light membranes. (2) Most of the Cyt(c1 + c2) and Cyt b-561 detected in dark redox titrations undergoes light-induced redox changes, both in high- and in low-light membranes. (3) The fractions of the total photooxidizable reaction center and Cyt(c1 + c2) oxidized under continuous light in the absence of antimycin are higher in membranes from low-light- than from high-light-grown cells. (4) From these data and results of kinetic studies it is proposed that cyclic electron flow under saturating light intensities is faster in high-light-grown cells.  相似文献   

8.
The pentose phosphate pathway operates at an elevated level in rat kidney following induction of diabetes and in the compensatory hypertrophy following unilateral nephrectomy in control and alloxan-diabetic rats, as shown by the yields of 14Co2 from [1-14C]glucose, [6-14C]glucose and 3H2O yields from [2-3H]glucose. The elevated flux through the pentose phosphate pathway is correlated with the increased RNA content and weight of the kidney. The direct utilization of NADPH for reductive synthetic reactions and the potential for indirect utilization via the sorbitol route and the linked transhydrogenase reactions of the glucuronate-xylulose pathway, for NADH and ATP generation, are also discussed.  相似文献   

9.
Purification of cytochrome b6 was pursued to further develop rational technology for purification, proof of purity, and study of properties of membrane proteins. Cytochrome b6 was purified—the first time from any source—from spinach chloroplast membranes; yield of pure cytochrome b6 was 30% of that found in ethanol-extracted particles. The three-step procedure (pH 8) employed: (I) extraction in Triton X-100-4 M (optionally 2 M) urea, (II) chromatography in a Bio-Gel A-1.5m Column (Triton X-100-4 M urea). Without this step, subsequent electrophoresis failed. (III) Preparative disc gel electrophoresis.

Properties of cytochrome b6: Cytochrome b6 migrated in undenatured form as a single band in disc electrophoresis (pH 8, 7 or 8.9). None of the limited, accepted properties of the cytochrome in particles was altered by the purification procedure: Reduced b6 has absorption maxima (22 °C) at 434, 536, and 563 nm; at −199 °C the a absorption region shows two peaks of equal intensity at 561 and 557 nm. Cytochrome b6 is reduced by dithionite (not by ascorbate) and is autoxidizable. The prosthetic group of b6 is protohaemin and is fully extractable by acid-acetone. No non-haem iron is present. The millimolar extinction coefficient of reduced b6 (563–600nm) per mole of haem is 21. The protein equivalent weight is 40000 g per mole of haem. Cytochrome b4 is an intrinsically aggregatable molecule. The reduced cytochrome does not react with CO except when Triton X-100 is present.  相似文献   


10.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


11.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


12.
David B. Knaff  Daniel I. Arnon 《BBA》1971,226(2):400-408
Light-induced absorbance changes of cytochrome b559 and C550 in chloroplasts indicate that noncyclic electron transport from water to ferredoxin (Fd)-NADP+ is carried out solely by System II and includes not one but two photoreactions (IIa and IIb) that proceed effectively only in short-wavelength light. (C550 is a new chloroplast component identified by spectral evidence and distinct from cytochromes.) The evidence suggests that the two short-wavelength light reactions operate in series, being joined by a System II chain of electron carriers that includes (but is not limited to) C550, cytochrome b559, and plastocyanin (PC).

H2O → IIbhv → C550 → cyt. b559 → PC → IIahv → Fd → NADP+

Photoreaction IIb involves an electron transfer from water to C550 that does not require plastocyanin and is the first known System II photoreaction resistant to inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and o-phenanthroline. Cytochrome b559 is reduced by C550 in a reaction that is readily inhibited by DCMU or o-phenanthroline. Thus, the site of DCMU (and o-phenanthroline) inhibition of System II appears to lie between C550 and cytochrome b559. Photoreaction IIa involves an electron transfer from cytochrome b559 and plastocyanin to ferredoxin-NADP+.  相似文献   


13.
Ken-ichiro Takamiya  Shigemi Obata 《BBA》1986,852(2-3):198-202
The photosynthetic membranes from Rhodopseudomonas palustris contained one species of membrane-bound c-type cytochrome, presumably cytochrome c1, and a b-type cytochrome with two heme centers. The molecular weight and midpoint potential of cytochrome c1 were 30000 and 275 mV, respectively. The peak of the reduced-minus-oxidized difference spectrum of cytochrome c1 was at 552 nm. Molecular weight of the b-type cytochrome was 32000 and the cytochrome had two midpoint potentials of 60 mV and −55 mV. The peaks of the reduced-minus-oxidized difference spectra of the high and low midpoint potential heme centers were at 560 and 562 nm, respectively. These results suggested that there was a cytochrome b-c1 complex in Rps. palustris.  相似文献   

14.
Soluble cytochrome b5 of human erythrocytes was purified very effectively by hydrophobic chromatography using a butyl-Toyopearl 650 column. Cytochrome b5 was adsorbed tightly on the column in the presence of 60% saturated ammonium sulfate, and was eluted at 40% saturation of ammonium sulfate in the elution buffer. The chromatography gave a good yield of cytochrome b5 of the highest purity so far reported as estimated from the 414 nm to 280 nm absorbance ratio of the oxidized form of the cytochrome b5. The value obtained wit the cytochrome b5 purified in this study was 6.57, and is higher than the previously reported highest value of 6.4 (Hultquist, D.E., Dean, R.T. and Douglas, R.H. (1974) Biochem. Biophys. Res. Commun. 60, 28–34). Spectral properties including molecular absorption coefficients were determined using the cytochrome b5 purified by this method.  相似文献   

15.
W. Bandlow  K. Wolf  F. Kaudewitz  E.C. Slater 《BBA》1974,333(3):446-459
1. A chromosomal respiration-deficient mutant of the petite-negative yeast Schizosaccharomyces pombe was isolated. Its mitochondria show respiration rates of about 7% of the wild-type respiration with NADH and succinate as substrate, and 45% with ascorbate in the presence of tetramethyl-p-phenylenediamine. Oxidation of NADH and succinate is insensitive to antimycin and cyanide and that of ascorbate is much less sensitive to cyanide than the wild type.

2. The amounts of cytochromes c1 and aa3 are similar in the mutant and wild type. Cytochrome b-566 could not be detected in low-temperature spectra after reduction with various substrates or dithionite. A b-558 is, however, present.

3. The b-cytochromes in the mutant are not reduced by NADH or succinate during the steady state even after addition of ubiquinone-1. QH2-3: cytochrome c reductase activity is very low and succinate oxidation is highly stimulated by phenazine methosulphate.

4. Antimycin does not bind to either oxidized or reduced mitochondrial particles of the mutant.

5. In contrast to the b-cytochromes of the wild type, b-558 in the mutant reacts with CO.

6. Cytochromes aa3, c and c1 are partly reduced in aerated submitochondrial particles isolated from the mutant and the EPR signal of Cu (II), measured at 35°K, is detectable only after the addition of ferricyanide. In the mutant, a signal with a trough at g = 2.01 is found, in addition to the signal at g = 1.98 found in the wild type.

7. The ATPase activity of particles isolated from the mutant is much lower than in the wild type but is still inhibited by oligomycin.  相似文献   


16.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


17.
Raymond Frade  Paulette Chaix 《BBA》1973,325(3):424-432
In a new series of experiments on Bacillus coagulans (ATCC 11.369), it was demonstrated that this organism possesses a respiratory system with cytochromes b, c1, c, (a+a3) and also cytochrome o. A small decrease in the pH of the growth medium from 6.5 to 5.5 increases the respiratory activity by a factor of 4 and induces a variation of the absorption ratio [603 (a+a3)]/[560 (b+c)] resulting in a preponderant increase in the 603 absorption. The kinetic studies of the respiratory system synthesis during the phenomenon of “respiratory adaptation” have shown that lowering the pH of the adaption medium has the same effect. Spectral studies of membrane fractions (red dithionite) with or without carbon monoxide showed a preferential synthesis of oxidase a3.  相似文献   

18.
Andr Vermeglio  Paul Mathis 《BBA》1973,292(3):763-771
The effect of light on the reaction center of Photosystem II was studied by differential absorption spectroscopy in spinach chloroplasts.

At − 196 °C, continuous illumination results in a parallel reduction of C-550 and oxidation of cytochrome b559 high potential. With flash excitation, C-550 is reduced, but only a small fraction of cytochrome b559 is oxidized. The specific effect of flash illumination is suppressed if the chloroplasts are preilluminated by one flash at 0 °C.

At − 50 °C, continuous illumination results in the reduction of C-550 but little oxidation of cytochrome b559. However, complete oxidation is obtained if the chloroplasts have been preilluminated by one flash at 0 °C. The effect of preillumination is not observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.

A model is discussed for the reaction center, with two electron donors, cytochrome b559 and Z, acting in competition. Their respective efficiency is dependent on temperature and on their states of oxidation. The specific effect of flash excitation is attributed to a two-photon reaction, possibly based on energy-trapping properties of the oxidized trap chlorophyll.  相似文献   


19.
The effect of hydration on the molecular dynamics of soft wheat gluten was investigated by solid state NMR. For this purpose, we recorded static and MAS 1H spectra and SPE, CP, and other selective 13C spectra under MAS and dipolar decoupling conditions on samples of dry and H2O and D2O hydrated gluten. Measurements of carbon-proton CP times and several relaxation times (proton T1, T and T2, and carbon T1) were also performed. The combination of these techniques allowed both site-specific and domain-averaged motional information to be obtained in different characteristic frequency ranges. Domains with different structural and dynamic behaviour were identified and the changes induced by hydration on the dynamics of different domains could be monitored. The proton spin diffusion process was exploited to get information on the degree of mixing among different gluten domains. The results are consistent with the “loop and train” model proposed for hydrated gluten.  相似文献   

20.
Arrhenius parameters for formation and decay of phototransients in suspensions of purple membrane fragments in H2O and 2H2O have been determined in the temperature range 0–60 °C. Kinetic isotope effects are found which show that proton transfer steps are involved in both formation and decay of the two longest-lived transients absorbing at 410 nm and 660 nm, respectively. The results also suggest that these transients do not occupy a single pathway in the spontaneous deexcitation of bacteriorhodopsin within the purple membrane. Purple membrane undergoes a phase transition at 25–30 °C in both H2O and 2H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号