首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Scintigraphic experiments and radioactivity measurements of tissues have shown that the radioactivity of 51Cr-labelled and neuraminidase-treated rabbit erythrocytes is rapidly accumulated in liver and spleen. Sequestration of these erythrocytes by liver and spleen was demonstrated by light and electron microscopy of these tissues after perfusion of the rabbits with solutions for tissue fixation. In liver the phagocytic activity of Kupffer cells was increased after injection of desialylated erythrocytes, while in spleen a significantly enhanced number of erythrocytes was found attached to the sinusoidal walls and in the reticulum of the red pulp.It was shown by scanning electron microscopy that neuraminidasetreatment did not influence the shape of erythrocytes.Desialylated and 51Cr-labelled erythrocytes from the cow are rapidly cleared from the blood-stream with a half-life time of about 3 h.It was shown in an in-vitro test that they adsorb to surviving slices from liver and spleen derived from the same animal. The amount of radioactivity adsorbed is appreciably enhanced in the presence of homologous serum when compared with buffer only.Human neuraminidase-treated erythrocytes are agglutinated in the direct and especially in the indirect Coombs-tests. The involvement of T-antigen in this phenomenon was largely excluded.The in vitro experiments and antibody consumption tests suggest that immunoglobulins (IgG) and complement from serum may be involved in recognition and sequestration of desialylated erythrocytes by macrophages in vivo.Part of this work has been reported at the 3. Int. Symposium on Glycoconjugates: Functions in Animals, Brighton, Great Britain, July 6–12, 1975Part of a doctoral thesis, Abteilung für Naturwissenschaftliche Medizin, Ruhr-Universität BochumWe are greatly indebted to Mrs. A. Chen Stute for her help with the Scintigraphic studies. We also thank Prof. Dr. W. Opferkuch, Universität Bochum, for discussion, Prof. Dr. W. Kaufmann, Institut für Milchforschung, Kiel-Schaedtbek, for valuable advices, and Mr. H.G. Richter, Universität Bochum, for the scanning electron microscopic studies of erythrocytes. A gift of human -globulin from Dr. W. Schneider from the Blutspendezentrale Hagen and a sample of desialylated N-blood-group substance from Prof. Dr. G. Uhlenbruck, Universität Köln, are gratefully acknowledged. This work was financially supported by the Deutsche Forschungsgemeinschaft (grants Scha 202/3 and 202/5) and by the Fonds der chemischen Industrie  相似文献   

3.
Monoclonal antibodies to human plasma Protein X alias complement S-protein   总被引:5,自引:0,他引:5  
Protein X alias complement S-protein was isolated by dissociation from purified XCSb-9 (fluid-phase terminal C5b-9) complexes with 250 mM deoxycholate and subsequent sucrose density gradient centrifugation and Sephacryl gel chromatography. Polyclonal rabbit and monoclonal mouse antibodies were used to preliminarily characterize the protein in human serum and plasma. In plasma, Protein X yielded a symmetrical immuno-precipitate of 2-mobility in a crossed immunoelectrophoresis assay. However, a second immunoprecipitate of Oh-mobility was observed when serum was analysed; this precipitate represented Protein X in complex with antithrombin-III. The co-precipitation of Protein X with serum antithrombin-III was exploited for establishing a simple screening test for unequivocal identification of monocJonal anti - Protein X antibodies. SDS-PAGE immunoblotting with monoclonal antibodies showed that Protein X exhibits pronounced microheterogeneity, migrating as a diffuse moiety of approx. M r 80-90 000. Additionally, a small amount of polymeric aggregates appear to be present in plasma. Reduction of disulfide bonds led to liberation of a polypeptide of approx. 15 K as discerned by two-dimensional SDS-PAGE immunoblotting. Protein X is not cleaved to lower molecular weight entities during the process of blood coagulation or during formation of fluid-phase terminal complement complexes. The plasma concentrations in healthy adults were in the range of500–700 pg/ml. The availability of methods for isolating Protein X and raising monoclonal antibodies will facilitate further studies on the dual role of this protein in the terminal complement and coagulation cascades.  相似文献   

4.
The results presented in this paper show that lysis of human erythrocytes by linoleic acid is not caused by peroxidation of the fatty acid. Peroxidase, superoxide dismutase and scavengers of O 2 and OH had no effect on the lysis while catalase showed only marginal inhibition suggesting that O 2 , OH, O 2 and H2O2 do not play any direct role in hemolysis by linoleic acid. Generators of H2O2 inhibited the lysis completely and methemoglobin cells were more resistant to hemolysis by linoleic acid. The fatty acid did neither bind to nor fomed complex with red cell ghosts. Membrane oxidation of sulphydryl groups was also not involved in the lysis. Β-Carotene, retinol and bile salts enhanced the lysis, while, cholesterol but not cholesterol acetate, inhibited it. Taurocholate-pretreated cells were more susceptible to linoleic acid lysis. These observations suggested-that lysis by linoleic acid may be due to its detergent property.  相似文献   

5.
6.
7.
Upon exposure of human erythrocytes to a high pressure of 200 mPa, both hemolysis and vesiculation occur. The hemolysis of erythrocytes at 200 mPa was enhanced by removal of sialic acids from the membrane surface with papain. However, such enhancement was suppressed by cross-linking of band 3 via an anti-band 3 antibody (AB3A), which recognizes the exofacial domain of band 3, or by clustering of band 3 via Zn2+. On the other hand, the size of high-pressure-induced vesicles increased from 423 to 525 nm in diameter upon exposure to papain of erythrocytes, but decreased to 444 nm with following treatment with AB3A. In these vesicles, the content of spectrin relative to band 3 was almost the same. Furthermore, the band 3-cytoskeleton interactions in erythrocyte membranes remained unaltered upon treatment with papain and AB3A. Flow cytometric analysis demonstrated that papain-pretreated erythrocytes mainly produce open ghosts at 200 mPa and that the production of such open ghosts is suppressed by AB3A. Thus, upon removal of negative charges from the membrane surface, open ghosts are readily produced due to the release of larger vesicles under pressure. Upon cross-linking of band 3 via AB3A, however, the release of smaller vesicles at 200 mPa is facilitated so that high-pressure-induced hemolysis is suppressed.  相似文献   

8.
The cross-linking reagents succinimidyl-4-(p-maleimidophenyl)-butyrate and N-succinimidyl-3-(2-pyridyldithio)-propionate were used to covalently attach antibodies against human erythrocytes to the thiol-containing paraffin, dodecanethiol. The complex formed, dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody was inserted into the membranes of reconstituted Sendai virus envelopes. This was achieved by addition of the dodecanethiol-maleimidophenylbutyrate-antibody to a detergent solution (Triton X-100) containing the viral envelope phospholipids and glycoproteins. Removal of the detergent led to the formation of vesicles containing the viral glycoprotein and the dodecanethiol-maleimidophenylbutyrate (or pyridyldithiopropionate)-antibody complexes within the same membrane. Reconstituted Sendai virus envelope-bearing antibodies against human erythrocytes were able to fuse with human erythrocytes (as was reflected by reconstituted Sendai virus envelope-induced hemolysis) from which the natural virus receptors were removed by treatment with neuraminidase. Thus, it appears that anti-human erythrocyte antibodies could substitute for the viral binding protein (hemagglutinin/neuraminidase glycoprotein) in mediating functional binding of the virus particles to the cell plasma membranes. Furthermore, from the results of the present work, it may be inferred that in addition to being the viral-binding protein, hemagglutinin/neuraminidase glycoprotein actively participates in the process of virus-cell fusion.  相似文献   

9.
R O Laine  B P Morgan  A F Esser 《Biochemistry》1988,27(14):5308-5314
A comparison is made between the hemolytic actions of melittin and the ninth component of complement (C9). Melittin and C9 produce "pores" of similar effective radius in erythrocytes under standardized conditions, and their hemolytic action is suppressed by metal ions at similar concentrations, suggesting a common mechanism. Polyclonal anti-melittin immunoglobulin G (IgG) produced in rabbits retards hemolysis mediated by human C9 in a specific manner. Such antibodies react in several immunoassays with human and monkey C9 but not with C9 from lower animals, and no inhibition of lysis mediated by C9 molecules from these animals is observed. Thus, it is unlikely that anti-melittin IgG reacts with a structural element, such as an amphipathic helix, on human C9 since such structures are also predicted to exist in other C9 molecules. Human C9 and melittin block cross-reactivity in a dose-dependent manner, and anti-melittin IgG recognizes an epitope located between amino acid residues 245 and 390 of human C9 on "Western" blots. Comparison of the melittin and human C9 sequences indicates two regions of complete homology, a tetrapeptide at positions 292-295, and a pentapeptide at positions 527-531 in human C9, corresponding to residues 8-16 in melittin. Inhibition of hemolysis is not caused by blocking of C9 binding to the C5b-8 complex; rather the antibody must dissociate from the bound C9 before lysis ensues, indicating that it interferes with a postbinding event. It is proposed that anti-melittin binds to a conformational epitope on native, folded human C9 and thereby retards unfolding of the molecule, which is required for membrane insertion and hemolysis.  相似文献   

10.
Cells under aerobic condition are always threatened with the insult of reactive oxygen species, which are efficiently taken care of by the highly powerful antioxidant systems of the cell. The erythrocytes (RBCs) are constantly exposed to oxygen and oxidative stress but their metabolic activity is capable of reversing the injury under normal conditions. In vitro hemolysis of RBCs induced by 5, 10 and 20 mM glucose was used as a model to study the free radical induced damage of biological membranes in hyperglycemic conditions and the protection rendered by vitamin E on the same. RBCs are susceptible to oxidative damage, peroxidation of the membrane lipids, release of hemoglobin (hemolysis) and alteration in activity of antioxidant enzymes catalase and superoxide dismutase. The glucose induced oxidative stress and the protective effect of vitamin E on cellular membrane of human RBCs manifested as inhibition of membrane peroxidation and protein oxidation and restoration of activities of superoxide dismutase and catalase, was investigated.Thiobarbituric acid reactive substances are generated from decomposition of lipid peroxides and their determination gives a reliable estimate of the amount of lipid peroxides present in the membrane. Vitamin E at 18 μg/ml (normal serum level) strongly enhanced the RBC resistance to oxidative lysis leading to only 50–55% hemolysis in 24 h, whereas RBCs treated with 10 and 20 mM glucose without vitamin E leads to 70–80% hemolysis in 24 h. Levels of enzymic antioxidants catalase, superoxide dismutase and nonenzymic antioxidants glutathione showed restoration to normal levels in presence of vitamin E. The study shows that vitamin E can protect the erythrocyte membrane exposed to hyperglycemic conditions and so a superior antioxidant status of a diabetic patient may be helpful in retarding the progressive tissue damage seen in chronic diabetic patients.  相似文献   

11.
Hemolysis was used as an endpoint for the measurement of damage to the plasma membrane in human erythrocytes after a single or a double heat shock. The thermotolerance of erythrocytes is a transitional phenomenon, reaching its maximum at a 3-hour incubation at 37 degrees C between the heat shocks.  相似文献   

12.
The mechanism of radiation hemolysis in human erythrocytes   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
Assembly of the terminal C5b-C9 complement components into the cytolytic C5b-9 complex is accompanied by exposure of characteristic neoantigens on the macromolecule. We report the production and characterization of mouse monoclonal antibodies to C9-dependent neoantigens of human C5b-9. Binding-inhibition assays with EDTA-human plasma and micro-ELISA assays with purified C9 showed that the antibodies did not react with native complement components and thus confirmed the specificity of the antibodies for the neoantigens. The monoclonal antibodies did, however, cross-react with cytolyticaIly inactive, fluid-phase C5b-9 complexes, Thus, expression of the neoantigenic determinants was not dependent on the formation of high molecular weight C9 polymers with the complex, since these are absent in fluid-phase C5b-9. Radioiodinated antibodies could be utilized in immunoradiometric assays for the detection and quantitation of C5b-9 on cell membranes. Cross-reactivities of the antibodies with C9-dependent neoantigens of several other animal species were examined and antibody clones cross-reacting with rabbit (clones 3BI, 3Dg, and 2F3), sheep (clones 3Dg and 2F3) and guinea-pig (clone 3D8) neoantigens were identified . Three of four tested clones (3D8, 2F3, IA12) precipitated C5b-9 complexes in double-diffusion assays, probably due to their interaction with multiple and repeating C9-epitopes on the terminal complexes. The monoclonal antibodies will be of value for definitive identification and quantitation of C5b-9 on cell membranes and in tissues, and for establishing immunoassays for detection and quantitation of terminal fluid-phase C5b-9 complexes in plasma.  相似文献   

15.
There has been described a type of hemolysis which occurs under certain defined conditions when erythrocytes are suspended in glucose solution. It consists of a prolytic phase lasting about an hour, followed by a hemolytic phase lasting about 2 hours. The physical factors controlling this delayed hemolysis have been investigated. The system is especially sensitive to changes of pH and of temperature. This type of hemolysis is inhibited by increased osmotic pressure and by phlorhizin, but not, as far as can be ascertained, by fluoride or iodoacetate. It is possible, but not yet proved, that delayed hemolysis in glucose solution is dependent on enzymic activity. Phosphorylation may be the limiting factor. During the prolytic phase the cells are easily permeable to potassium. It is concluded that the development of cation permeability is not a direct cause of hemolysis.  相似文献   

16.
Monoclonal antibodies were prepared from mice that had been immunized with the nuclear matrix from chick embryonal erythrocytes. Seven stable clones were obtained by an ELISA that used nuclear lysate as the solid phase. Six clones of them reacted with the nuclear matrix, and one reacted with nuclear components other than the matrix. Immunoblotting showed that one clone recognized the 72K polypeptide, two clones recognized the 69K polypeptide and three clones recognized both the 69K and 44K polypeptides. Indirect immunofluorescence that used antibodies to the nuclear matrix showed homogeneous nuclear fluorescence in cultured chick embryonal fibroblasts, and intense fluorescence was present in the peripheral part of the nucleus in thin-sectioned chick embryos. Only weak nuclear fluorescence was seen in fibroblasts from humans and rats when two of the antibodies which recognized only 69K polypeptide were used. The rest of the antibodies to the nuclear matrix produced no nuclear fluorescence in human and rat fibroblasts. The metaphase-rich population of chick embryonal fibroblasts were stained diffusely over the entire cytoplasm, but not the chromosomes, when antibodies to the nuclear matrix were used. These results indicate that monoclonal antibodies we prepared are directed to the major proteins of the nuclear matrix that correspond to the lamin A and B defined in rat liver.  相似文献   

17.
Monoclonal antibodies against human beta-glucocerebrosidase   总被引:5,自引:0,他引:5  
Monoclonal antibodies were obtained against the membrane-bound lysosomal enzyme beta-glucocerebrosidase (acid beta-glucosidase), which is deficient in Gaucher's disease. BALB/c mice were immunized with homogeneous enzyme protein extracted from a sodium dodecyl sulphate/polyacrylamide gel. The mice were subsequently hyperimmunized with partially purified enzyme prior to fusion of spleen cells with myeloma cells. After fusion, 32 primary hybrid cell populations were obtained which continued to produce antibodies against beta-glucocerebrosidase after prolonged time of culture. All antibodies reacted with both native and denatured enzyme. Four primary cell populations were subcloned and the antibodies produced were characterized. The antibodies were all four of the IgG1 subclass. Three of these antibodies bind to protein A whereas one does not. The results of binding assays indicated that three of the antibodies react with the same antigenic domain (epitope 1), but the fourth with a different one (epitope 2). Probably two antigenic determinants are present in epitope 1 since one of the antibodies with specificity for epitope 1 is inactivated after iodination by the chloramine-T procedure whereas a second one is not.  相似文献   

18.
Summary Cell-specific antigens are mainly found in cells or membrane surfaces rather than in the surrounding matrix. However, until now it was not possible to produce antibodies specific for cellular structures of chondrocytes. In 1989, Lance (Immunol. Lett. 21:63–73; 1989) first established specific monoclonal antibodies for human articular chondrocytes tested only by immunofluorescence. Studies describing the specificity of these five antibodies (HUMC 1–5) and their relevance for immunohistological analysis of cartilage tissue were not available until now. Therefore, the aim of the following study was to investigate the distribution of HUMC 1, 2, 3, 4, and 5 in mesenchymal cellsin vivo andin vitro immunohistochemically. Further investigations concentrate on the localization of chondrocyte specific antigens using immunoelectron microscopy. Immunohistological studies showed positive immunostainings with all five antibodies in human chondrocytesin vivo andin vitro. A cross-reaction with human fibroblasts and osteoblasts for the antibodies HUMC 2 and HUMC 5 was observed. furthermore, a parallel loss of immunoreactivity for HUMC 1, HUMC 3, and HUMC 4 was observed in cultured chondrocytes indicating that the specific antigens vanish during differentiation observedin vitro. Subsequent immunoblot analysis employing collagens as antigens did not show any reactivity. Using immunoelectron microscopy, gold particle labeling was observed in intracytoplasmatic vesicles of isolated chondrocytes. Our results indicate that HUMC 1, HUMC 3, and HUMC 4 are specific for cartilage cells and might be suitable for immunohistological analysis of different cartilage tissues and pathologically altered chondrocytes.  相似文献   

19.
20.
Low-molecular-weight dicarbonyls formed during free radical peroxidation of polyene lipids (malondialdehyde) and autooxidation (glyoxal) or other oxidative transformations of glucose (methylglyoxal) are able to modify the structure of lipid-protein supramolecular complexes of cells. We investigated changes in the erythrocyte membrane structure after an 18-h exposure of human red blood cells in the presence of various natural dicarbonyls. The changes in the mechanical properties of the membrane after membrane modification by carbonyls were evaluated by the susceptibility of erythrocytes to hypoosmotic hemolysis. It has been shown that treatment of red blood cells with malondialdehyde increases the resistance of these cells to hypoosmotic hemolysis, whereas the malondialdehyde isomer, methylglyoxal, in contrast, makes red blood cells more sensitive to the action of hypoosmotic solutions. Paradoxically, a homologue of malondialdehyde, glyoxal, has no effect on hemolysis of red blood cells in hypoosmotic solutions. The findings point to the possibility of the multidirectional effect of low-molecular-weight dicarbonyls with similar structures on the structure and function of biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号