首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological actions. We have reported that LPA stimulates hepatic stellate cell proliferation and inhibits DNA synthesis in hepatocytes, suggesting that LPA might play some role in the liver. We have found that plasma LPA level and serum autotaxin (ATX) activity were increased in patients with chronic hepatitis C. However, the clinical significance of LPA and its synthetic enzyme, autotaxin (ATX), is still unclear. To determine whether the increase of plasma LPA level and serum ATX activity might be found generally in liver injury, we examined the possible modulation of them in the blood in rats with various liver injuries. Plasma LPA level and serum ATX activity were increased in carbon tetrachloride-induced liver fibrosis correlatively with fibrosis grade, in dimethylnitrosamine-induced acute liver injury correlatively with serum alanine aminotransferase level or in 70% hepatectomy as early as 3 h after the operation. Plasma LPA level was correlated with serum ATX activity in rats with chronic and acute liver injury. ATX mRNA in the liver was not altered in carbon tetrachloride-induced liver fibrosis. Plasma LPA level and serum ATX activity are increased in various liver injuries in relation to their severity. Whether increased ATX and LPA in the blood in liver injury is simply a result or also a cause of the injury should be further clarified.  相似文献   

2.
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid (LPA), was previously identified in human serum. Although cPA possesses distinct physiological activities not elicited by LPA, its biochemical origins have scarcely been studied. In the present study, we assayed cPA formation from lysophosphatidylcholine in fetal bovine serum and found significant activity of transphosphatidylation that generated cPA. The cPA-producing enzyme was purified from fetal bovine serum using five chromatographic steps yielding a 100-kDa protein with cPA biosynthetic activity. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of its tryptic peptides revealed that the enzyme shared identical fragments with human autotaxin, a serum lysophospholipase D that produces LPA. Western blot analysis demonstrated that the 100-kDa protein was specifically recognized by an anti-human autotaxin antibody. Moreover, recombinant rat autotaxin was found to generate cPA in addition to LPA. No significant cPA- or LPA-producing activity was detected in autotaxin-depleted serum from bovine or human prepared by immunoprecipitation with an anti-autotaxin monoclonal antibody. These results indicate that the generation of cPA and LPA in serum is mainly attributed to autotaxin.  相似文献   

3.
Abstract Cerebrospinal fluid (CSF) induced neurite retraction of differentiated PC12 cells; the action was observed in 15 min (a rapid response) and the activity further increased until 6 h (a long-acting response) during exposure of CSF to the cells. The CSF action was sensitive to monoglyceride lipase and diminished by homologous desensitization with lysophosphatidic acid (LPA) and by pretreatment with an LPA receptor antagonist Ki16425. Although fresh CSF contains LPA to some extent, the LPA content in the medium was increased during culture of PC12 cells with CSF. The rapid response was mimicked by exogenous LPA, and a long-acting response was duplicated by a recombinant autotaxin, lysophospholipase D (lyso-PLD). Although the lyso-PLD substrate lysophosphatidylcholine (LPC) was not detected in CSF, lyso-PLD activity and an approximately 120-kDa autotaxin protein were detected in CSF. On the other hand, LPC but not lyso-PLD activity was detected in the conditioned medium of a PC12 cell culture without CSF. Among neural cells examined, leptomeningeal cells expressed the highest lyso-PLD activity and autotaxin protein. These results suggest that leptomeningeal cells may work as one of the sources for autotaxin, which may play a critical role in LPA production and thereby regulate axonal and neurite morphological change.  相似文献   

4.
Oxidatively modified low-density lipoprotein (oxLDL) plays a key role in the initiation of atherosclerosis by increasing monocyte adhesion. The mechanism that is responsible for the oxLDL-induced atherogenic monocyte recruitment in vivo, however, still remains unknown. Oxidation of LDL generates lysophosphatidylcholine, which is the main substrate for the lysophosphatidic acid (LPA) generating enzyme autotaxin. We show that oxLDL requires endothelial LPA receptors and autotaxin to elicit CXCL1-dependent arterial monocyte adhesion. Unsaturated LPA releases endothelial CXCL1, which is subsequently immobilized on the cell surface and mediates LPA-induced monocyte adhesion. Local and systemic application of LPA accelerates the progression of atherosclerosis in mice. Blocking the LPA receptors LPA(1) and LPA(3) reduced hyperlipidemia-induced arterial leukocyte arrest and atherosclerosis in the presence of functional CXCL1. Thus, atherogenic monocyte recruitment mediated by hyperlipidemia and modified LDL crucially depends on LPA, which triggers endothelial deposition of CXCL1, revealing LPA signaling as a target for cardiovascular disease treatments.  相似文献   

5.

Background

Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.

Methodology/Principal Findings

Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.

Conclusion/Significance

Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.  相似文献   

6.
Lysophospholipids have long been recognized as membrane phospholipid metabolites, but only recently lysophosphatidic acids (LPA) have been demonstrated to act on specific G protein-coupled receptors. The widespread expression of LPA receptors and coupling to several classes of G proteins allow LPA-dependent regulation of numerous processes, such as vascular development, neurogenesis, wound healing, immunity, and cancerogenesis. Lysophosphatidic acids have been found to induce many of the hallmarks of cancer including cellular processes such as proliferation, survival, migration, invasion, and neovascularization. Furthermore, autotaxin (ATX), the main enzyme converting lysophosphatidylcholine into LPA was identified as a tumor cell autocrine motility factor. On the other hand, cyclic phosphatidic acids (naturally occurring analogs of LPA generated by ATX) have anti-proliferative activity and inhibit tumor cell invasion and metastasis. Research achievements of the past decade suggest implementation of preclinical and clinical evaluation of LPA and its analogs, LPA receptors, as well as autotaxin as potential therapeutic targets.  相似文献   

7.
Obesity is associated with increased cardiovascular morbidity and mortality, but the direct signals to initiate or exaggerate cardiomyopathy remain largely unknown. Present study aims to explore the pathophysiological role of autotaxin/lysophosphatidic acid (LPA) in the process of cardiomyopathy during obesity. Through utilizing mouse model and clinical samples, present study investigates the therapeutic benefits of autotaxin inhibitor and clinical correlation to obesity‐related cardiomyopathy. The elevated circulating levels of autotaxin are closely associated with cardiac parameters in mice. Administration with autotaxin inhibitor, PF‐8380 effectively attenuates high fat diet‐induced cardiac hypertrophy, dysfunction and inflammatory response. Consistently, autotaxin inhibition also decreases circulating LPA levels in obese mice. In in vitro study, LPA directly initiates cell size enlargement and inflammation in neonatal cardiomyocytes. More importantly, circulating levels of autotaxin are positively correlated with cardiac dysfunction and hypertrophy in 55 patients. In conclusion, present study uncovers the correlation between circulating autotaxin and cardiac parameters in mice and human patient, and provided solid evidence of the therapeutic application of autotaxin inhibitor in combating obesity‐related cardiomyopathy.  相似文献   

8.
Lysophosphatidic acid (LPA) is involved in physiological and pathological states, including in neural development and inflammation. We assessed the expression pattern of the LPA receptors 1-3 and of LPA-producing enzyme autotaxin in post-mortem human brain tissue, both in normal individuals and in individuals who died following traumatic brain injury. We found that LPA receptors and autotaxin are weakly expressed in the normal control adult brain. Quantitative PCR for the LPA receptors and autotaxin mRNA showed an increase of LPAR2 and a decrease of autotaxin mRNA expression in the cortex following brain injury. Immunohistochemical analysis showed that LPAR1 colocalized with astrocytes and that LPAR2 is present on the ependymal cells lining the lateral ventricle in the brain samples from individuals who died following severe head injury. This work shows for the first time that key components of the LPA pathway are modulated following TBI in humans.  相似文献   

9.
High expression of autotaxin in cancers is often associated with increased tumor progression, angiogenesis and metastasis. This is explained mainly since autotaxin produces the lipid growth factor, lysophosphatidate (LPA), which stimulates cell division, survival and migration. It has recently become evident that these signaling effects of LPA also produce resistance to chemotherapy and radiation-induced cell death. This results especially from the stimulation of LPA2 receptors, which depletes the cell of Siva-1, a pro-apoptotic signaling protein and stimulates prosurvival kinase pathways through a mechanism mediated via TRIP-6. LPA signaling also increases the formation of sphingosine 1-phosphate, a pro-survival lipid. At the same time, LPA decreases the accumulation of ceramides, which are used in radiation therapy and by many chemotherapeutic agents to stimulate apoptosis. The signaling actions of extracellular LPA are terminated by its dephosphorylation by a family of lipid phosphate phosphatases (LPP) that act as ecto-enzymes. In addition, lipid phosphate phoshatase-1 attenuates signaling downstream of the activation of both LPA receptors and receptor tyrosine kinases. This makes many cancer cells hypersensitive to the action of various growth factors since they often express low LPP1/3 activity. Increasing our understanding of the complicated signaling pathways that are used by LPA to stimulate cell survival should identify new therapeutic targets that can be exploited to increase the efficacy of chemo- and radio-therapy. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

10.
Lysophosphatidic acid (LPA) exhibits a wide variety of biological functions as a bio-active lysophospholipid through G-protein-coupled receptors specific to LPA. Currently at least six LPA receptors are identified, named LPA1 to LPA6, while the existence of other LPA receptors has been suggested. From studies on knockout mice and hereditary diseases of these LPA receptors, it is now clear that LPA is involved in various biological processes including brain development and embryo implantation, as well as patho-physiological conditions including neuropathic pain and pulmonary and renal fibrosis. Unlike sphingosine 1-phosphate, a structurally similar bio-active lysophospholipid to LPA and produced intracellularly, LPA is produced by multiple extracellular degradative routes. A plasma enzyme called autotaxin (ATX) is responsible for the most of LPA production in our bodies. ATX converts lysophospholipids such as lysophosphatidylcholine to LPA by its lysophospholipase D activity. Recent studies on ATX have revealed new aspects of LPA. In this review, we highlight recent advances in our understanding of LPA functions and several aspects of ATX, including its activity, expression, structure, biochemical properties, the mechanism by which it stimulates cell motility and its pahto-physiological function through LPA production.  相似文献   

11.
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with G protein-coupled seven transmembrane receptors (GPCRs). So far, five GPCRs, designated LPA(1-5), and, more recently, two additional GPCRs, GPR87 and P2Y5, have been identified as receptors for LPA. These LPA receptors can be classified into two families, the EDG and P2Y families, depending on their primary structures. Recent studies on gene targeting mice and family diseases of these receptors revealed that LPA is involved in both pathological and physiological states including brain development (LPA(1)), neuropathy pain (LPA(1)), lung fibrosis (LPA(1)), renal fibrosis (LPA(1)) protection against radiation-induced intestinal injury (LPA(2)), implantation (LPA(3)) and hair growth (P2Y5). LPA is produced both in cells and biological fluids, where multiple synthetic reactions occur. There are at least two pathways for LPA production. In serum or plasma, LPA is predominantly produced by a plasma enzyme called autotaxin (ATX). ATX is a multifunctional ectoenzyme and is involved in many patho-physiological conditions such as cancer, neuropathy pain, lymphocyte tracking in lymph nodes, obesity, diabetes and embryonic blood vessel formation. LPA is also produced from phosphatidic acid (PA) by its deacylation catalyzed by phospholipase A (PLA)-type enzymes. However, the physiological roles of this pathway as well as the enzymes involved remained to be solved. A number of phospholipase A(1) and A(2) isozymes could be involved in this pathway. One PA-selective PLA(1) called mPA-PLA(1)alpha/LIPH is specifically expressed in hair follicles, where it has a critical role in hair growth by producing LPA through a novel LPA receptor called P2Y5.  相似文献   

12.
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.  相似文献   

13.
In obesity, adipocyte hypertrophy is often associated with recrutement of new fat cells (adipogenesis) under the control of circulating and local regulatory factors. Among the different lipids released in the extracellular compartment of adipocytes, our group found the presence of lysophosphatidic acid (LPA). LPA is a bioactive phospholipid able to regulate several cell responses via the activation of specific G-protein coupled membrane receptors. Our group found that LPA increases preadipocyte proliferation and inhibits adipogenesis via the activation of LPA1 receptor subtype. Extracellular LPA-synthesis is catalyzed by a lysophospholipase D secreted by adipocytes: autotaxin (ATX). Adipocyte ATX expression strongly increases with adipogenesis as well as in individuals exhibiting type 2 diabetes associated with massive obesity. A possible contribution of ATX and LPA as paracrine regulators of adipogenesis and obesity associated diabetes is proposed.  相似文献   

14.
Isoform-selective agonists and antagonists of the lysophosphatidic acid (LPA) G protein-coupled receptors (GPCRs) have important potential applications in cell biology and therapy. LPA GPCRs regulate cancer cell proliferation, invasion, angiogenesis, and also biochemical resistance to chemotherapy- and radiotherapy-induced apoptosis. LPA and its analogues also are feedback inhibitors of the enzyme lysophospholipase D (lysoPLD, a.k.a., autotaxin, ATX), a central regulator of invasion and metastasis. For cancer therapy, the optimal therapeutic profile would be a metabolically-stabilized, pan-LPA receptor antagonist that also inhibited lysoPLD. For protection of gastrointestinal mucosa and lymphocytes, LPA agonists would be desirable to minimize or reverse radiation or chemical-induced injury. Analogues of lysophosphatidic acid (LPA) that are chemically modified to be less susceptible to phospholipases and phosphatases show activity as long-lived receptor-specific agonists and antagonists for LPA receptors, as well as inhibitors for the lysoPLD activity of ATX.  相似文献   

15.
Lysophosphatidic acid (LPA) is a "bioactive" phospholipid able to generate growth factor-like activities in a wide variety of normal and malignant cell types. LPA is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity, or reproduction. In parallel, LPA could also be involved in the etiology of some diseases such as atherosclerosis, cancer, or obesity. The bioactivity of LPA is mediated by the activation of specific G-protein coupled receptors (LPA1, LPA2, and LPA3) leading to the activation of a number of intracellular effectors. LPA is present in solution (bound to albumin) in various extracellular fluids (blood, ascites, aqueous humor), and is released in vitro by some cell types such as platelets, cancer cells, or adipocytes. LPA is a rather polar phospholipid, which cannot easily diffuse throughout plasma membrane, and its presence outside the cells requires soluble phospholipases (secreted phospholipase A2 and soluble lysophospholipase D/autotaxin), which synthesize LPA directly in the extracellular milieu, from precursors such as phosphatidic acid and lysophosphatidylcholine. In the future, LPA receptors, as well as the enzymes involved in LPA metabolism, will constitute promising pharmacological and transgenic targets to determine the physiopathological relevance of "bioactive" LPA in vivo.  相似文献   

16.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.  相似文献   

17.
Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.  相似文献   

18.
Tumor cell migration, invasion, and angiogenesis are important determinants of tumor aggressiveness, and these traits have been associated with the motility stimulating protein autotaxin (ATX). This protein is a member of the ectonucleotide pyrophosphatase and phosphodiesterase family of enzymes, but unlike other members of this group, ATX possesses lysophospholipase D activity. This enzymatic activity hydrolyzes lysophosphatidylcholine to generate the potent tumor growth factor and motogen lysophosphatidic acid (LPA). In the current study, we show a link between ATX expression, LPA, and vascular endothelial growth factor (VEGF) signaling in ovarian cancer cell lines. Exogenous addition of VEGF-A to cultured cells induces ATX expression and secretion, resulting in increased extracellular LPA production. This elevated LPA, acting through LPA(4), modulates VEGF responsiveness by inducing VEGF receptor (VEGFR)-2 expression. Down-regulation of ATX secretion in SKOV3 cells using antisense morpholino oligomers significantly attenuates cell motility responses to VEGF, ATX, LPA, and lysophosphatidylcholine. These effects are accompanied by decreased LPA(4) and VEGFR2 expression as well as by increased release of soluble VEGFR1. Because LPA was previously shown to increase VEGF expression in ovarian cancer, our data suggest a positive feedback loop involving VEGF, ATX, and its product LPA that could affect tumor progression in ovarian cancer cells.  相似文献   

19.
Cyclic phosphatidic acid (CPA) is a naturally occurring analog of lysophosphatidic acid (LPA) in which the sn-2 hydroxy group forms a five-membered ring with the sn-3 phosphate. Here, we describe the synthesis of R-3-CCPA and S-3-CCPA along with their pharmacological properties as inhibitors of lysophospholipase D/autotaxin, agonists of the LPA(5) GPCR, and blockers of lung metastasis of B16-F10 melanoma cells in a C57BL/6 mouse model. S-3CCPA was significantly more efficacious in the activation of LPA(5) compared to the R-stereoisomer. In contrast, no stereoselective differences were found between the two isomers toward the inhibition of autotaxin or lung metastasis of B16-F10 melanoma cells in vivo. These results extend the potential utility of these compounds as potential lead compounds warranting evaluation as cancer therapeutics.  相似文献   

20.
Ocular hypertension due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM) is a major risk factor for glaucoma, a leading cause of irreversible blindness. However, the etiology of ocular hypertension remains unclear. Although autotaxin, a secreted lysophospholipase D and its catalytic product lysophosphatidic acid (LPA) have been shown to modulate AH drainage through TM, we do not have a complete understanding of their role and regulation in glaucoma patients, TM and AH outflow. This study reports a significant increase in the levels of autotaxin, lysophosphatidylcholine (LPC), LPA and connective tissue growth factor (CTGF) in the AH of Caucasian and African American open angle glaucoma patients relative to age-matched non-glaucoma patients. Treatment of human TM cells with dexamethasone, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) increased the levels of autotaxin protein, a response that was mitigated by inhibitors of glucocorticoid receptor, NF-kB and SMAD3. Dexamethasone, TNF-α, IL-1β and LPC treatment of TM cells also led to an increase in the levels of CTGF, fibronectin and collagen type 1 in an autotaxin dependent manner. Additionally, in perfused enucleated mouse eyes, autotaxin and LPC were noted to decrease, while inhibition of autotaxin was increased aqueous outflow through the TM. Taken together, these results provide additional evidence for dysregulation of the autotaxin-LPA axis in the AH of glaucoma patients, reveal molecular insights into the regulation of autotaxin expression in TM cells and the consequences of autotaxin inhibitors in suppressing the fibrogenic response and resistance to AH outflow through the TM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号