共查询到20条相似文献,搜索用时 0 毫秒
1.
The oligomeric state of spectrin in the erythrocyte membrane skeleton of the rat was investigated following extraction in a low ionic strength buffer for 24 and 96 h. All analyses were quantitatively compared with preparations from human erythrocyte membranes. After nondenaturing agarose-polyacrylamide gel electrophoresis, the human samples revealed their characteristic spectrin oligomer pattern; there were high molecular weight complexes near the origin of the gel, followed by several high order oligomers, tetramers, and dimers. The pattern in the rat membrane skeleton also included tetramers and a high molecular weight complex band, but had only one oligomer and no dimers. With time the high molecular weight complex diminished and oligomers accumulated in both the rat and human, while dimers accumulated only in the human and tetramers accumulated only in the rat. Tetramers decreased with time in the human. Extraction of spectrin increased with time and was greater from rat than the human red cell membrane at both time points. The percentage of spectrin and actin in the low ionic strength extract was similar between species, as analyzed by SDS-polyacrylamide electrophoresis, staining, and densitometry. Proteins 4.1 and 4.9 were present in greater percentages in the human. The only temporal effect on monomeric protein composition was an increase of protein A in the rat. There was no species difference in protein A percentage at 24 h, but at 96 h the rat was greater than the human. The results suggest that there are significant differences in the structural arrangement of the rat and human erythrocyte membrane skeleton. 相似文献
2.
The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents 总被引:5,自引:0,他引:5
Band 3 protein, the anion transport protein of the human erythrocyte membrane, was solubilized and purified in aqueous solutions of two nonionic detergents: Ammonyx-LO (dimethyl laurylamine oxide) and C12E9 (nonaethylene glycol lauryl ether). The state of association of the purified protein was studied by analytical ultracentrifugation. Band 3 protein solubilized and studied in solutions of Ammonyx-LO was found to be in a monomer/dimer/tetramer association equilibrium. Band 3 protein freshly prepared in C12 E9 showed the same behaviour; however, during aging the protein was converted into stable noncovalent dimers. The conversion was retarded by the presence of beta-mercaptoethanol or by treatment of the samples with iodoacetamide; it seems to be due to oxidation of the protein by degradation products of the detergent. It is concluded that a monomer/dimer/tetramer association equilibrium is the native state of association of band 3 protein solubilized by nonionic detergents. Since nonionic detergents are assumed not to interfere with protein-protein interactions among membrane proteins, the results strongly support the claim that, in the erythrocyte membrane, band 3 is in a monomer/dimer/tetramer association equilibrium (Dorst, H.-J. and Schubert, D. (1979) Hoppe-Seyler's Z. Physiol. Chem. 360, 1605-1618). 相似文献
3.
A specific structural association between spectrin component 1 and band 3 in human erythrocyte membrane has been demonstrated by covalent cross-linkings, specific labeling, and the technique of two-dimensional gel electrophoresis. A complex of 330,000 daltons, representing 1 + 3, was produced in mildly oxidized membranes at physiologic pH and isotonic conditions but not at hypotonic conditions (< 10 mM KCl or NaCl). The yield of this complex decreased dramatically as the monovalent cation concentration decreased from 90 mM to 30 mM. The presence of Mg++ or Ca++ (2 mM) at low ionic strength promoted 1 + 3 cross-linking in an amount similar to that produced at isotonic conditions. The specific segment of band 3 involved in the cross-linking was also investigated by means of chymotrypsin digestion of band 3 in the intact red cells. The results showed the cross-links between spectrin component 1 and the 55,000-dalton fragment of band 3 at physiologic pH and isotonic conditions. This is consistent with the idea that band 3 is anchored on or contacted with the submembrane meshwork at the cytoplasmic membrane surface. 相似文献
4.
Effect of stilbenedisulfonate binding on the state of association of the membrane-spanning domain of band 3 from bovine erythrocyte membrane 总被引:1,自引:0,他引:1
The membrane-spanning domain of bovine band 3, the anion transport protein of erythrocyte membrane, was purified in the presence of nonaethyleneglycol lauryl ether (C12E9) and the effect of a covalent attachment of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS), a potent transport inhibitor, on the state of association of the domain isolated (the 58 kDa fragment) was studied via gel filtration, gel electrophoresis and sedimentation velocity experiments. It was indicated that the DIDS-unlabeled fragment in C12E9 solution forms heterogeneous aggregates which are larger in size than the dimer. This contrasted with the behavior that bovine band 3 is present as dimers or tetramers in the same medium (Nakashima and Makino (1980) J. Biochem. 88, 933-947). When DIDS was covalently attached, the fragment was present as a single molecular species which was indicated to be a dimer by molecular weight determination. The secondary structure of the fragment was not affected by DIDS. The change in the state of association caused by the DIDS-binding was also found in the presence of sucrose monolaurate (SE12), which was a more potent detergent for extraction of the 58 kDa fragment from membranes than C12E9. However, the complex with SE12 was extremely unstable. 相似文献
5.
The triplet lifetime and absorption anisotropy decay of eosin-labeled band 3 was measured in resealed erythrocyte ghosts. Membrane potentials were generated by the addition of valinomycin in the presence of a K+ gradient. Neither negative nor positive membrane potentials had any detectable effect on the rotational diffusion of band 3 nor on the eosin triplet lifetime. The membrane potential did, however, affect quenching of the eosin triplet state by I- and TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl). Quenching was enhanced by a negative membrane potential (negative inside) and reduced by a positive membrane potential. In addition, it was found that a negative membrane potential enhanced the efficiency of eosin labeling of band 3 in intact erythrocytes. A positive membrane potential had the opposite effect. These results indicate that the eosin binding site on band 3 becomes more accessible to the extracellular aqueous phase in the presence of a negative membrane potential and less accessible in the presence of a positive membrane potential. Quenching by I- and TEMPO of the triplet state of eosin-labeled band 3 was further investigated as a function of pH. Quenching by TEMPO and its dependence on membrane potential were relatively insensitive to pH. In contrast, the rate of quenching by I- showed a marked decrease over the range pH 5.5-9.5. Moreover, the effect of a negative membrane potential on I- quenching also varied with pH. These results are discussed on the supposition that the eosin probe is located in the anion access channel of band 3.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Harish C. Pant Mridulika Virmani Paul E. Gallant 《Biochemical and biophysical research communications》1983,117(2):372-377
Calcium-dependent protease activity capable of degrading a number of endogenous proteins was found in rat red blood cell membranes. This protease activity, like that found in human red blood cells, was activated by low concentrations of calcium, but in the rat red blood cells, unlike the human red blood cells, calcium-activated protease activity was membrane-bound. A number of endogenous membrane-bound proteins were degraded after the addition of calcium to the membranes. These included spectrin bands 1 and 2 as well as bands 3, 2.1, and 2.2. No calcium-induced aggregation (transglutaminase activity) was noted in the rat red blood cell membranes. 相似文献
7.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding. 相似文献
8.
We have determined experimentally the temperature dependence of human erythrocyte spectrin dimer intrinsic viscosity at shear rates 8-12 s-1 using a Cartesian diver viscometer. We find that the intrinsic viscosity decreases from 43 +/- 3 ml/g at 4 degrees C to 34 +/- 3 ml/g when the temperature is increased to 38 degrees C. Our results show that spectrin dimers are flexible worm-like macromolecules with persistence length about 20 nm and that the mean square end-to-end distance for this worm-like macromolecules decreases when the temperature is increased. This implies that the spectrin dimer internal energy decreases when the end-to-end distance is increased and that the free energy increase associated with making the end-to-end distance longer than the equilibrium value for the free molecules is of entropic origin. The temperature dependence of the erythrocyte membrane shear modulus reported previously in the literature therefore appears mainly to be due to temperature dependent alterations in the membrane skeleton topology. 相似文献
9.
Interactions between spectrin and the inner surface of the human erythrocyte membrane have been implicated in the control of lateral mobility of the integral membrane proteins. We report here that incubation of “leaky” erythrocytes with a water-soluble proteolytic fragment containing the membrane attachment site for spectrin achieves a selective and controlled dissociation of spectrin from the membrane, and increases the rate of lateral mobility of fluorescein isothiocyanate-labeled integral membrane proteins (> 70% of label in band 3 and PAS-1). Mobility of membrane proteins is measured as an increase in the percentage of uniformly fluorescent cells with time after fusion of fluorescent with nonfluorescent erythrocytes by Sendai virus. The cells are permeable to macromolecules since virus-fused erythrocytes lose most of their hemoglobin. The membrane attachment site for spectrin has been solubilized by limited proteolysis of inside-out erythrocyte vesicles and has been purified (V). Bennett, J Biol Chem 253:2292 (1978). This 72,000-dalton fragment binds to spectrin in solution, competitively inhibits association of 32P-spectrin with inside-out vesicles with a Ki of 10?7M, and causes rapid dissociation of 32P-spectrin from vesicles. Both acid-treated 72,000-dalton fragment and the 45,000 dalton-cytoplasmic portion of band 3, which also was isolated from the proteolytic digest, have no effect on spectrin binding, release, or membrane protein mobility. The enhancement of membrane protein lateral mobility by the same polypeptide that inhibits binding of spectrin to inverted vesicles and displaces spectrin from these vesicles provides direct evidence that the interaction of spectrin with protein components in the membrane restricts the lateral mobility of integral membrane proteins in the erythrocyte. 相似文献
10.
11.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bis-phosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P < 0.002 and P < 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding sites is observed (P < 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P < 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network. 相似文献
12.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bisphosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P less than 0.002 and P less than 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding site is observed (P less than 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P less than 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network. 相似文献
13.
The ATP-dependent transformation of crenated white human erythrocyte ghosts into smoothed disc and cup forms is inhibited by the soluble 40-45-kilodalton (kDa) cytoplasmic portion of the major transmembrane protein, band 3. The band 3 fragment was prepared by chymotryptic treatment of inverted vesicles stripped of peripheral proteins. When present at greater than or equal to 0.2 mg per mg membrane protein (ie, greater than or equal to 2 mol fragment per mol endogenous band 3), the fragment significantly reduced the rate of shape change but did not alter the proportion of membranes that were ultimately converted into smoothed forms (greater than 90%). The inhibitory activity of the fragment could not be attributed to contamination of the fragment preparation by actin or proteolytic enzymes. ATP-independent shape transformation was not inhibited. The band 3 fragment may compete with endogenous, intact band 3 for an association with the spectrin-actin network required for ATP-dependent smoothing of crenated membranes. 相似文献
14.
Hemichrome binding to band 3: nucleation of Heinz bodies on the erythrocyte membrane 总被引:12,自引:0,他引:12
Hemichromes, the precursors of red cell Heinz bodies, were prepared by treatment of native hemoglobin with phenylhydrazine, and their interaction with the cytoplasmic surface of the human erythrocyte membrane was studied. Binding of hemichromes to leaky red cell ghosts was found to be biphasic, exhibiting both high-affinity and low-affinity sites. The high-affinity sites were shown to be located on the cytoplasmic domain of band 3, since (i) glyceraldehyde-3-phosphate dehydrogenase, a known ligand of band 3, competes with the hemichromes for their binding sites, (ii) removal of the cytoplasmic domain of band 3 by proteolytic cleavage causes loss of the high-affinity sites, and (iii) the isolated cytoplasmic domain of band 3 interacts tightly with hemichromes, rapidly forming a pH-dependent, water-insoluble copolymer upon mixing in aqueous solution. Since the copolymer of hemichromes with the cytoplasmic domain of band 3 was readily isolatable, a partial characterization of its properties was conducted. The copolymer was shown to be of defined stoichiometry, containing approximately 2.5 hemichrome tetramers (or approximately 5 hemichrome dimers) per band 3 dimer, regardless of the ratio of hemichrome:band 3 in the initial reaction solution. The copolymer was found to be of macroscopic dimensions, generating particles which could be easily visualized without use of a microscope. The coprecipitation was also highly selective for hemichromes, since, in mixed solutions with native hemoglobin, only hemichrome was observed in the isolated pellet. Furthermore, no precipitate was ever observed upon mixing the cytoplasmic domain of band 3 with oxyhemoglobin, deoxyhemoglobin, (carbonmonoxy) hemoglobin, or methemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
B M Willardson B J Thevenin M L Harrison W M Kuster M D Benson P S Low 《The Journal of biological chemistry》1989,264(27):15893-15899
The predominant attachment site of the spectrin-based cytoskeleton to the erythrocyte membrane occurs via the interaction of ankyrin with the cytoplasmic domain of band 3 (cdb3). In order to further characterize this interaction, we have conducted experiments to localize the ankyrin-binding site on cdb3. Four monoclonal and three antipeptide polyclonal antibodies were raised against cdb3 and used in competition studies to identify regions of close association of cdb3 with ankyrin. Antibodies to regions of cdb3 near the cytoplasmic domain-membrane spanning domain junction had no effect on 125I-ankyrin binding. Likewise, an antibody to a highly conserved region between residues 142 and 154 did not inhibit ankyrin binding. However, antibodies at or near the cysteine 201-317 cluster and the proposed proline-rich hinge in the center of cdb3 were potent inhibitors of ankyrin association, as were antibodies to the acidic NH2 terminus. Additional evidence for interaction of ankyrin with the NH2-terminal region of cdb3 was obtained by demonstrating the ability of ankyrin to inhibit tyrosine phosphorylation of cdb3 at its NH2 terminus by a purified calf thymus tyrosine kinase. These studies reveal two regions of cdb3, distant in primary sequence, which interact with ankyrin. A specific conformation of cdb3 may be required to permit these regions to simultaneously associate with ankyrin and allow binding to occur. 相似文献
16.
The anion transport activities of erythrocytes from patients with chronic myelogenous leukemia (CML) and normal donors were comparable. In CML erythrocytes, significant reduction in the number of ankyrin-binding sites, present in the cytoplasmic domain of band 3, may lead to partial loss of cytoskeletal anchorage to the bilayer and account for their increased Con-A agglutinability and heat-sensitivity (Basu, J., Kundu, M., Rakshit, M.M. and Chakrabarti, P. (1988) Biochim. Biophys. Acta 945, 121-126). 相似文献
17.
Characterization of the lateral interaction between human erythrocyte spectrin subunits. 总被引:1,自引:0,他引:1
A technique in which the subunits of human erythrocyte spectrin were immobilized on a nitrocellulose membrane was developed to study which domains of the subunit are able to bind to the counterpart subunit. The limited tryptic digestion of the isolated alpha and beta subunits of human erythrocyte spectrin produced eight fragments in the alpha subunits and nine fragments in the beta subunit. Four fragments of the beta (80, 60, 44, and 18 kDa) and two of the alpha (82 and 33 kDa) bound to alpha and beta subunits which were immobilized on nitrocellulose membrane strips, respectively. The binding affinities of all the fragments to the subunits, however, were remarkably lower than that of the mother proteins. The titration of fluorescence anisotropy of N-(1-anilinonaphthyl-4)maleimide which was covalently attached to the subunit by the trypsin-digested fraction of the counterpart subunit also indicate weak binding of the fragments even in solution. These findings suggest that the high-affinity binding of the alpha subunit to the beta subunit to form spectrin alpha beta dimer occurs only when the binding domains are arrayed along the polypeptide chains at the appropriate positions on the subunits. 相似文献
18.
J E Hesketh 《Cell biology international reports》1986,10(8):623-629
Incubation of either ghost membranes with 32P- -ATP or intact erythrocytes with 32P-inorganic phosphate led to phosphorylation of the beta-chain of the major membrane-associated protein spectrin. This phosphorylation was reduced by 30% by insulin (10-100 microU/ml) both in membranes and in intact cells. The results show that the membrane-cytoskeleton is responsive to extracellular signals such as hormone receptor activation. 相似文献
19.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence. 相似文献
20.
Mechanisms of cytoskeletal regulation: functional and antigenic diversity in human erythrocyte and brain beta spectrin 总被引:13,自引:0,他引:13
A S Harris J P Anderson P D Yurchenco L A Green K J Ainger J S Morrow 《Journal of cellular biochemistry》1986,30(1):51-69
A study of human erythrocyte and brain spectrin with particular emphasis on the beta subunits revealed a structural homology but functional dissimilarity between these two molecules. Six monoclonal antibodies raised to human erythrocyte beta spectrin identify three of the four proteolytically defined domains of erythrocyte beta spectrin. Five of these monoclonal antibodies cross-react with human brain spectrin. None of a previously identified set of alpha erythrocyte spectrin monoclonal antibodies [Yurchenco et al: J Biol Chem 257:9102, 1982] reacted with brain spectrin. A domain map generated by limited tryptic digestion shows that brain spectrin is composed of proteolytically resistant domains analogous to erythrocyte spectrin, but the brain protein is more basic. The binding of brain spectrin to erythrocyte ankyrin, both in solution and on erythrocyte IOVs, yielded an association constant approximately 100 time weaker than for erythrocyte spectrin. The binding of azido-calmodulin under native conditions was specific for the erythrocyte beta subunit but was not calcium dependent. In contrast, azido-calmodulin bound only to the alpha subunit of brain spectrin in a calcium-dependent manner. The similarity of structure but modified functional characteristics of the brain and erythrocyte beta spectrins suggest that these proteins serve different cellular roles. 相似文献