首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

2.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

3.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

4.
Abstract The relationship between ethylene-induced leaf abscission and ethylene-induced inhibition of auxin transport in midrib sections of the leaf blade of Citrus sinensis L. Osbeck, Populus deltoides Bart, and Eucalyptus camaldulensis Dehn. was studied. These species differed greatly in their abscission response to ethylene. The kinetic trend of abscission resembled that of the inhibition of auxin transport in all three species. It is suggested that one of the main actions of ethylene in the leaf blade is to inhibit auxin transport in the veinal tissues, thus reducing the amount of auxin transported from the leaf blade to the abscission zone. Ethylene inhibited transport of both IAA (indole-3-acetic acid) and NAA (α-naphthaleneacetic acid) in the midrib sections. However, while ethylene enhanced the conjugation of IAA with aspartic acid and glucose in the apical (absorbing) segment of the midrib sections, it had little effect on the conjugation of NAA. The data indicate that auxin destruction through conjugation does not play a major role in the inhibition of auxin transport by ethylene.  相似文献   

5.
The physiological role of phenylacetic acid (PAA) as an endogenous regulator of cotyledon abscission was examined using cotton (Gossypium hirsutum L. cv LG 102) seedlings. Application of 100 micromolar or more PAA to leafless cotyledon abscission-zone explants resulted in the retardation of petiole abscission and a decrease in the rise of ethylene evolution that normally accompanies aging of these explants in vitro. The partial inhibition of ethylene evolution in these explants by PAA was indirect since application of this compound stimulated short-term (<24 hours) ethylene production. PAA treatment partially suppressed the stimulation of petiole abscission elicited by either ethylene or abscisic acid. Both free and an acid-labile, bound form of PAA were identified in extracts prepared from cotyledons. No discernible pattern of changes in free or bound PAA was found during the course of ethylene-induced cotyledon abscission. Unlike indole-3-acetic acid, transport of PAA in isolated petiole segments was limited and exhibited little polarity. On the whole, these results are not consistent with the direct participation of PAA in the endogenous regulation of cotyledon abscission.  相似文献   

6.
Sagee O  Goren R  Riov J 《Plant physiology》1980,66(4):750-753
The question whether abscisic acid (ABA) induces cellulase and polygalacturonase activity and, hence, abscission directly or whether its action is mediated by C2H4 was studied in citrus (Osbeck var. Shamouti) leaf explants using aminoethoxyvinyl glycine (AVG), an inhibitor of C2H4 biosynthesis. ABA in concentrations of 10 micromolar and higher induced C2H4 production and accelerated abscission. AVG inhibited C2H4 formation, activity of cellulase and polygalacturonase, and abscission in ABA-treated explants. AVG did not inhibit the increase in the activity of the cell-wall degrading enzymes or abscission in a saturating level of externally supplied C2H4. This indicates that the effect of AVG resulted from inhibition of the formation of endogenous ethylene. The data indicate that in citrus leaf explants the induction of the activity of cellulase and polygalacturonase and abscission by ABA is mediated by C2H4.  相似文献   

7.
Einset JW  Lyon JL  Sipes DL 《Plant physiology》1981,67(6):1109-1112
An in vitro bioassay for chemicals that affect Citrus abscission was used to identify three inhibitors of stylar abscission in lemon pistil explants incubated on defined nutrient media. The three inhibitors (picloram, 4-chlorophenoxyacetic acid, and 3,5,6-trichloropyridine-2-oxyacetic acid) are all auxins, and the most potent of them (i.e. picloram) was found to be at least 10 times more active in the bioassay than 2,4-dichlorophenoxyacetic acid. Picloram (2 micromolar) also was shown to be effective in inhibiting stylar abscission in pistil explants from other Citrus cultivars such as mandarin, Valencia, and Washington navel oranges and grapefruit. To study the physiology of auxins active as abscission inhibitors versus inactive auxins in lemon pistils, the transport and metabolism of [1-14C]-2,4-dichlorophenoxyacetic acid was compared with that of [2-14C]indole-3-acetic acid, which is without effect in the bioassay over the range from 0.1-100 micromolar. Insignificant quantities of labeled indole-3-acetic acid and/or labeled derivatives were found to reach the presumptive zone of stylar abscission under the test conditions. Labeled 2,4-dichlorophenoxyacetic acid and/or labeled derivatives also were transported slowly through pistils, but some radioactivity could be detected in the stylar abscission zone as early as 24 hours after the start of incubation. Extensive conversion of [2-14C]indole-3-acetic acid to labeled compounds tentatively considered to be glycoside and cellulosic glucan derivatives was found with the use of solvent extraction methodology. A significantly smaller percentage of the radioactivity in pistils incubated on [1-14C]-2,4-dichlorophenoxyacetic acid was found in fractions corresponding to these derivatives. Both transport and metabolism appear to be important factors affecting the activity of auxins as abscission inhibitors in the bioassay.  相似文献   

8.
9.
Abscission: movement and conjugation of auxin   总被引:4,自引:3,他引:1       下载免费PDF全文
A 1-hour application of indole-3-acetic acid to bean (Phaseolus vulgaris L. cv. Red Kidney) explants inhibited abscission for an 8-hour aging period. Use of indole-3-acetic acid-14C showed that the applied indole-3-acetic acid was conjugated within explant tissue and that this conjugation mechanism accounts for loss of effectiveness of indole-3-acetic acid in inhibiting abscission after 8 hours. Reapplication of indole-3-acetic acid to an explant at a later time, before the induced aging requirement was completed reinhibited abscission. 2,4-Dichlorophenoxyacetic acid, which is not destroyed or conjugated by this system, did not lose its ability to inhibit abscission. It was concluded that indole-3-acetic acid destruction is one of the processes involved in the aging stage of abscission in explants.  相似文献   

10.
Abscission: the role of aging   总被引:15,自引:15,他引:0       下载免费PDF全文
Abeles FB  Holm RE  Gahagan HE 《Plant physiology》1967,42(10):1351-1356
Excision of Phaseolus vulgaris L. c.v. Red Kidney abscission zone explants results in senescence, mobilization, and abscission. Because these processes take place at about the same time, there has been some question as to whether they are causally related or are occurring in an independent but simultaneous fashion. Data presented here suggest that the latter interpretation is correct. After abscission zone explants are isolated from the leaf an aging process is set into motion and a degradation of metabolites in the pulvinus takes place. During the aging process the explants also become increasingly sensitive to ethylene which in turn promotes cell separation. Indoleacetic acid, cytokinins, and coumarin appear to retard aging since both degradative processes and abscission are inhibited. However, ethylene increased abscission without increasing degradative processes indicating that abscission and senescence are independent processes occurring at the same time.  相似文献   

11.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

12.
Three types of whole plant experiments are presented to substantiate the concept that an important function of ethylene in abscission is to reduce the transport of auxin from the leaf to the abscission zone. (a) The inhibitory effect of ethylene on auxin transport, like ethylene-stimulated abscission, persists only as long as the gas is continuously present. Cotton (Gossypium hirsutum L. cv. Stoneville 213) and bean (Phaseolus vulgaris L. cv. Resistant Black Valentine) plants placed in 14 μl/l of ethylene for 24 or 48 hours showed an increase in leaf abscission and a reduced capacity to transport auxin; but when returned to air, auxin transport gradually increased and abscission ceased. (b) Ethylene-induced abscission and auxin transport inhibition show similar sensitivities to temperature. A 24-hour exposure of cotton plants to 14 μl/l of ethylene at 8 C resulted in no abscission and no significant inhibition of auxin transport. Increasing the temperature during ethylene treatment resulted in a progressively greater reduction in auxin transport with abscission occurring at [unk]27 C where auxin transport was inhibited over 70%. (c) Auxin pretreatment reduced both ethylene-induced abscission and auxin transport inhibition. No abscission occurred, and auxin transport was inhibited only 18% in cotton plants which were pretreated with 250 mg/l of naphthalene acetic acid and then placed in 14 μl/l of ethylene for 24 hours. In contrast, over 30% abscission occurred, and auxin transport was inhibited 58% in the corresponding control plants.  相似文献   

13.
Cell Wall Solubilization in Pedicel Abscission of Begonia Flower Buds   总被引:1,自引:0,他引:1  
Effects of metabolic inhibitors and growth regulators on the course of abscission and on the activities of cell wall solubilizing enzymes were studied in pedicel explants of Begonia flower buds. Actinomycin D, chloramphenicol and 2,4-dinitrophenol slightly retarded abscission, whereas cycloheximide exerted a strong inhibition if applied until 10.5 h after explant excision. Indoleacetic acid retarded and ethylene promoted abscission and cell wall solubilization. However, the activities of cell wall solubilizing enzymes did not correspond with the course of abscission. No polygalacturonase and pectic acid and pectin transeliminases could be detected in the abscission zone during abscission, whereas a low pectin methylesterase activity did not change. Endo- and exocellulase activities did not increase until about 10 h after the onset of abscission, indicating that they are the result rather than the cause of abscission.  相似文献   

14.
Abstract The abscission of citrus leaf explants demonstrates the well-known enhancing effect of ethylene and the delaying one of auxin when treatment is started at excision time. Total peroxidase activity increases differently in tissues of the blade, abscission zone, and petiole. The highest activity at zero time is recovered in abscission zone in which also the response to the abscission regulators is the most visible. Isoperoxidase profiles are modified in opposite directions by ethylene and auxin respectively. Both regulators affect the activity of the same cathodic and anodic isoperoxidases without any qualitative changes. By the same time, auxin-like compounds increase in isolated abscission zones at 24 h from excision and decrease at 48 h. The level of one inhibitor complex undergoes an inverse variation. It is suggested that the increase in auxin during the first stage of abscission is necessary for influencing the growth of cells which is required to cause abscission.  相似文献   

15.
Abscisic Acid and photosynthesis in isolated leaf mesophyll cell   总被引:10,自引:8,他引:2       下载免费PDF全文
Abscisic acid (AbA) treatments of concentrations of up to 135 micromolar did not inhibit photosynthesis in enzymatically isolated leaf mesophyll cells of Phaseolus vulgaris, Nicotiana tabacum, and Lycopersicum esculentum over periods of up to 5 hours. Thin slices of leaves preincubated in hypertonic solutions identical to those used to isolate cells were shown to synthesize AbA rapidly, although accumulation of AbA in the cells was low due to extensive release of the newly synthesized AbA into the medium. The levels of endogenously made AbA in leaf cells of Phaseolus vulgaris rose from a low of 0.27 micromolar to a high of 6.74 micromolar during 2 hours preincubation. Exogenously applied AbA can be taken up by the cells as was demonstrated using 14[C]AbA. Thus, AbA applied at concentrations 19 times higher than endogenous levels does not change the rate of photosynthesis.  相似文献   

16.
The investigations carried out to find the role of abscisic acid in the phenomena of abscission of flower buds and bolls of cotton (Gossypium hirsutum L. cv. ‘H-14’) have shown abscisic acid content to be low in retained bolls as compared to that in the abscising ones of the same age, suggesting that relatively higher endogenous abscisic acid content to be promotive of abscission. Abscisic acid applied exogenously either to intact flower buds/bolls or boll explants promoted their abscission. Naphthalene acetic acid not only reduced abscission but also could erase completely the promotive effect of abscisic acid on abscission. Gibberellic acid promoted abscission in intact buds and boll explants but applied to intact bolls it reduced their shedding even more than naphthalene acetic acid. Gibberellic acid could also counteract the promotive effect of abscisic acid in the case of intact bolls but enhanced that of boll explants. All the cytokinin-furfurylamino-purine treatments given other than at the abscission zone promoted abscission. Furfurylaminopurine applied in combination with abscisic acid showed some antagonistic effect in the case of intact bolls and boll explants abscission zone treatments. Ascorbic acid applied at a relatively lower dose (0.025 mM) reduced shedding but applied at a higher dose it showed promotion. Ascorbic acid could erase the promotive effect of abscisic acid on abscission to a significant extent.  相似文献   

17.
Role of polygalacturonase in bean leaf abscission   总被引:2,自引:0,他引:2       下载免费PDF全文
Berger RK  Reid PD 《Plant physiology》1979,63(6):1133-1137
The role of polygalacturonase in leaf abscission was studied in explants of Phaseolus vulgaris L. cv. Red Kidney. Bean polygalacturonase was partially characterized and comparisons were made between the bean enzyme and previously reported higher plant polygalacturonases. Polygalacturonase isolated from bean leaf abscission zones has a pH optimum between 4.5 and 5.0 and hydrolyzed polygalacturonides in an exo-fashion. Activity was found to be higher with a deesterified substrate than with an esterified pectin. No correlation between polygalacturonase activity and abscission was observed. Activity remained virtually constant over the course of abscission in explants aged either in air or in ethylene. The enzyme was primarily localized in the abscission zone, however, indicating a possible involvement in the abscission process. A theoretical model which could explain the relationship between polygalacturonase and bean leaf abscission is discussed.  相似文献   

18.
Curtis RW 《Plant physiology》1981,68(6):1249-1252
To obtain information regarding the antiethylene properties and binding site of Ag+, studies were initiated to define conditions under which Ag+ does or does not inhibit ethylene action. AgNO3, applied as a leaf spray, inhibited 2-chloroethylphosphonic acid (Ethrel)-induced leaf abscission from green cuttings of Vigna radiata in white light but lost considerable activity in the dark. In the absence of Ethrel, AgNO3 stimulated abscission in the dark. When cuttings were dark-aged for 24 hours prior to treatment with AgNO3 and aged for an additional 24 hours in the dark after treatment, good inhibition of subsequent Ethrel-induced abscission was restored by returning the cuttings to light. However, when dark aging was preceded by far-red irradiation, considerably less inhibition of Ethrel-induced abscission was restored in the light. AgNO3 was completely inactive on cuttings aged in the dark and treated with Ethrel in the dark. Light is required for the antiethylene activity of AgNO3 with regard to leaf abscission of Vigna.  相似文献   

19.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

20.
Experiments were conducted on developing fruitlet explants of two mango (Mangifera indica L.) cultivars to establish the source and dynamics of ethylene production prior to and during fruitlet abscission. Abscission of all fruits in the samples occurred at approximately 86 and 74 hours postharvest in `Keitt' and `Tommy Atkins,' respectively. Increased abscission began 26 hours from harvest and was preceded by enhanced ethylene synthesis. Enhanced ethylene production initiated approximately 48 hours prior to abscission and increased to a maximum near the time of fruitlet abscission. The seed produced the highest amount of ethylene on a per gram fresh weight basis. The pericarp, however, was the main source of ethylene on an absolute basis, since it represented more than 85% of total fruitlet weight. Pedicels containing the abscission zone produced no detectable ethylene prior to or at the moment of abscission. Fumigation of `Tommy Atkins' fruitlets with 1, 15, or 100 microliters per liter ethylene accelerated abscission by 24 to 36 hours in comparison with unfumigated controls. Diffusion of ethylene from distal fruitlet tissues to the abscission zone triggers the events leading to separation of the fruit from the tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号