首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Group II intron homing in yeast mitochondria is initiated at active target sites by activities of intron-encoded ribonucleoprotein (RNP) particles, but is completed by competing recombination and repair mechanisms. Intron aI1 transposes in haploid cells at low frequency to target sites in mtDNA that resemble the exon 1-exon 2 (E1/E2) homing site. This study investigates a system in which aI1 can transpose in crosses (i.e., in trans). Surprisingly, replacing an inefficient transposition site with an active E1/E2 site supports <1% transposition of aI1. Instead, the ectopic site was mainly converted to the related sequence in donor mtDNA in a process we call "abortive transposition." Efficient abortive events depend on sequences in both E1 and E2, suggesting that most events result from cleavage of the target site by the intron RNP particles, gapping, and recombinational repair using homologous sequences in donor mtDNA. A donor strain that lacks RT activity carries out little abortive transposition, indicating that cDNA synthesis actually promotes abortive events. We also infer that some intermediates abort by ejecting the intron RNA from the DNA target by forward splicing. These experiments provide new insights to group II intron transposition and homing mechanisms in yeast mitochondria.  相似文献   

4.
5.
6.
7.
8.
9.
The Pet54p protein is an archetypical example of a dual functioning (‘moonlighting’) protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5β group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5′ untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5β intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5′ UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5β intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5′ UTL RNA. Competition experiments show that the COX3 5′UTL and aI5β intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5β intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5β splicing and provided a possible means to coregulate COX1 and COX3 expression.  相似文献   

10.
11.
R M Henke  R A Butow    P S Perlman 《The EMBO journal》1995,14(20):5094-5099
Intron 4 alpha (aI4 alpha) of the yeast mitochondrial COXI gene is a mobile group I intron that contains a reading frame encoding both the homing endonuclease I-SceII and a latent maturase capable of splicing both aI4 alpha and the fourth intron of the cytochrome b (COB) gene (bI4). The aI4 alpha reading frame is a member of a large gene family recognized by the presence of related dodecapeptide sequence motifs called P1 and P2. In this study, missense mutations of P1 and P2 were placed in mitochondrial DNA by biolistic transformation. The effects of the mutations on intron mobility, endonuclease I-SceII activity and maturase function were tested. The mutations of P1 strongly affected mobility and endonuclease I-SceII activity, but had little or no effect on maturase function; mutations of P2 affected splicing but not mobility or endonuclease I-SceII activity. Surprisingly, the conditional (temperature-sensitive) mutations at P1 and P2 block one or the other function of the protein but not both. This study indicates that the two functions depend on separate domains of the intron-encoded protein.  相似文献   

12.
13.
14.
15.
16.
17.
Intron 1 of the coxI gene of yeast mitochondrial DNA (aI1) is a group IIA intron that encodes a maturase function required for its splicing in vivo. It is shown here to self-splice in vitro under some reaction conditions reported earlier to yield efficient self-splicing of group IIB introns of yeast mtDNA that do not encode maturase functions. Unlike the group IIB introns, aI1 is inactive in 10 mM Mg2+ (including spermidine) and requires much higher levels of Mg2+ and added salts (1M NH4Cl or KCl or 2M (NH4)2SO4) for ready detection of splicing activity. In KCl-stimulated reactions, splicing occurs with little normal branch formation; a post-splicing reaction of linear excised intron RNA that forms shorter lariat RNAs with branches at cryptic sites was evident in those samples. At low levels of added NH4Cl or KCl, the precursor RNA carries out the first reaction step but appears blocked in the splicing step. AI1 RNA is most reactive at 37-42 degrees C, as compared with 45 degrees C for the group IIB introns; and it lacks the KCl- or NH4Cl-dependent spliced-exon reopening reaction that is evident for the self-splicing group IIB introns of yeast mitochondria. Like the group IIB intron aI5 gamma, the domain 4 of aI1 can be largely deleted in cis, without blocking splicing; also, trans-splicing of half molecules interrupted in domain 4 occurs. This is the first report of a maturase-encoding intron of either group I or group II that self-splices in vitro.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号