首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA encoding DNA (cytosine-5)-methyltransferase (DNA MeTase) of mouse cells has been cloned and sequenced. The nucleotide sequence contains an open reading frame sufficient to encode a polypeptide of 1573 amino acid residues, which is close to the apparent size of the largest species of DNA MeTase found in mouse cells. The carboxylterminal 570 amino acid residues of the inferred protein sequence shows striking similarities to bacterial type II DNA cytosine methyltransferases and appears to represent a catalytic methyltransferase domain. The amino-terminal portion of the molecule may be involved in regulating the activity of the carboxyl-terminal methyltransferase domain, since antibodies directed against a peptide sequence located within this region inhibits transmethylase activity in vitro. A 5200 base DNA MeTase-specific mRNA was found to be expressed in all mouse cell types tested, and cell lines known to have different genomic methylation patterns were found to contain DNA MeTase proteins of similar or identical sizes and de novo sequence specificities. The implications of these findings for an understanding of the mechanisms involved in the establishment and maintenance of methylation patterns are discussed.  相似文献   

2.
The lipoate acetyltransferase (E2, Mr 70,000) and protein X (Mr 51,000) subunits of the bovine pyruvate dehydrogenase multienzyme complex (PDC) core assembly are antigenically distinct polypeptides. However comparison of the N-terminal amino acid sequence of the E2 and X polypeptides reveals significant homology between the two components. Selective tryptic release of the 14C-labelled acetylated lipoyl domains of E2 and protein X from native PDC generates stable, radiolabelled 34 and 15 kDa fragments, respectively. Thus, in contrast to E2 which contains two tandemly-arranged lipoyl domains, protein X appears to contain only a single lipoyl domain located at its N-terminus.  相似文献   

3.
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells.  相似文献   

4.
Lipid extracts of bovine pulmonary surfactant, which retain many of the biophysical characteristics of natural surfactant, contain approx. 98% lipid and 2% protein, as determined by amino acid analysis. Polyacrylamide/urea gel electrophoresis reveals that lipid extract surfactant contained a major apoprotein band with apparent Mr 3500 and minor apoprotein bands with apparent Mr 15,000 and 7000. After reduction, the 15 kDa band disappears and is replaced by a prominent band with apparent Mr = 5000. Reduction also results in a relative diminution of the 7 kDa band and a relative increase in the intensity of the 3.5-kDa band. Edman degradation reveals two major peptide sequences which have been designated surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptide (N-terminal Leu) and a minor sequence designated surfactant-associated peptide (N-terminal Ile). The latter surfactant-associated peptide appears to be related to the N-terminal Leu peptide but lacks the terminal Leu. N-Terminal analysis by dansylation demonstrates that the 15 and 5 kDa (reduced) apoprotein species contain N-terminal Phe, Leu and Ile. The 3.5 and 7 kDa bands contain only N-terminal Leu and Ile. Chromatography of lipid extracts on silicic acid columns gives rise to fraction I, which contains protein and phosphatidylglycerol, and fraction II, which contains protein, phosphatidylglycerol and phosphatidylethanolamine. Fraction I was primarily composed of the 15-kDa apoproteins, while fraction II contained mainly the 3.5 and 7 kDa apoproteins. Both fractions exhibited biophysical activity after reconstitution with dipalmitoylphosphatidylcholine. These results indicate that lipid extracts contain an oligomer of 15 kDa containing surfactant-associated peptide (N-terminal Phe) and surfactant-associated peptides (N-terminal Leu or Ile) which interact through sulfhydryl and perhaps other bonds. Lipid extracts also contain 3.5 kDa monomers of surfactant-associated peptides with N-terminal Leu and N-terminal Ile which can dimerize through sulfhydryl and perhaps hydrophobic interactions.  相似文献   

5.
In a previous publication (Narhi, L. O. and Fulco, A. J. (1986) J. Biol. Chem. 261, 7160-7169) we described the characterization of a soluble 119,000-dalton P-450 cytochrome (P-450BM-3) that was induced by barbiturates in Bacillus megaterium. This single polypeptide contained 1 mol each of FAD and FMN/mol of heme and, in the presence of NADPH and O2, catalyzed the oxygenation of long-chain fatty acids without the aid of any other protein. We have now utilized limited trypsin proteolysis in the presence of substrate to cleave P-450BM-3 into two polypeptides (domains) of about 66,000 and 55,000 daltons. The 66-kDa domain contains both FAD and FMN but no heme, reduces cytochrome c in the presence of NADPH, and is derived from the C-terminal portion of P-450BM-3. The 55-kDa domain is actually a mixture of three discrete peptides (T-I, T-II, and T-III) separable by high performance liquid chromatography. All three contain heme and show a P-450 absorption peak in the presence of CO and dithionite. The major component, T-I (Mr = 55 kDa), binds fatty acid substrate and has an N-terminal amino acid sequence identical to that of intact P-450BM-3, an indication that this domain constitutes the N-terminal portion of the 119-kDa protein. T-II (54 kDa) is the same as T-I except that it is missing the first nine N-terminal amino acids and does not bind substrate. T-III (Mr = 53.5 kDa) has lost the first 15 N-terminal residues and does not bind substrate. Since trypsin digestion of P-450BM-3 carried out in the absence of substrate yields T-II and T-III but no T-I, it appears that 1 or more residues of the first nine N-terminal amino acids of this protein are intimately involved in substrate binding. Although both the heme- and flavin-containing tryptic peptides retain their original half-reactions, fatty acid monooxygenase activity cannot be reconstituted after proteolysis, and the two domains, once separated, show no affinity for each other. In most respects, the reductase domain of P-450BM-3 more closely resembles the mammalian microsomal P-450 reductases than it does any known bacterial protein.  相似文献   

6.
Human placental insulin receptor contains 47 Cys per an alpha beta dimer. Most of the 94 Cys in an intact alpha 2 beta 2 receptor are expected to form interchain or intrachain disulfide bonds, since there appears to be only one free cysteine residue in each beta subunit. In order to gain more insight into the three-dimensional organization of the insulin receptor, we have used limited trypsin digestion, SDS-PAGE, and protein microsequencing. The present study revealed the following; major tryptic cleavages occurred at alpha 164, alpha 270, alpha 582, and beta 1115, generating Mr 175,000, 130,000, 100,000, 70,000, and 55,000 disulfide-linked complexes. Under reducing conditions, tryptic fragments of Mr values = 30,000, 70,000, 20,000, 55,000, and 20,000 were identified to be alpha(1-164), alpha(165-582), alpha(165-270), alpha(271-582), and alpha(583-C-terminal), respectively. The major beta subunit tryptic fragment of Mr = 55,000 was assumed to have beta(724-1115) or beta(N-terminal-392). The Mr 175,000 complex appeared to contain two alpha(1-164) and two alpha(165-582), whereas the Mr 70,000 complex contained alpha(583-C-terminal) and beta(724-1115). Tryptic cleavage at alpha 582 apparently produced one Mr 175,000 and two Mr 70,000 complexes, suggesting that the alpha(583-C-terminal) domain interacts with the extracellular domain of the beta subunit by disulfide bonds. Tryptic cleavage at alpha 270 resulting in a formation of one Mr 100,000 complex consisting of two alpha(1-270) and two Mr 130,000 complexes consisting of alpha(271-C-terminal) and beta(724-1115) suggests that Cys residues involved with disulfide bonds between the two alpha subunits are located in the alpha(1-270) domain. The identification of the Mr 55,000 complex consisting of small tryptic fragments between alpha(122-270) indicates that 40 Cys residues in the two alpha(122-270) domains are inter- and intramolecularly associated by disulfide bonds. The alpha(1-121) domain does not appear to be linked to any other domains by disulfide bonds. These results are consistent with the structural model that the N-terminal domains of alpha subunits (122-270) are disulfide-linked together while the C-terminal domain (583-C-terminal) of the alpha subunit is linked to the N-terminal domain of the beta subunit by disulfide bonds.  相似文献   

7.
The enzyme chorismate synthase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroC gene and confirmed by determining the N-terminal amino acid sequence of the purified enzyme. The complete polypeptide chain consists of 357 amino acid residues and has a calculated subunit Mr of 38,183. Cross-linking and gel-filtration experiments show that the enzyme is tetrameric. An improved purification of chorismate synthase from Neurospora crassa is also described. Cross-linking and gel-filtration experiments on the N. crassa enzyme show that it is also tetrameric with a subunit Mr of 50,000. It is proposed that the subunits of the N. crassa enzyme are larger because they contain a diaphorase domain that is absent from the E. coli enzyme.  相似文献   

8.
The nucleotide sequence of the cellulase gene celC, encoding endoglucanase C of Clostridium thermocellum, has been determined. The coding region of 1032 bp was identified by comparison with the N-terminal amino acid (aa) sequence of endoglucanase C purified from Escherichia coli. The ATG start codon is preceded by an AGGAGG sequence typical of ribosome-binding sites in Gram-positive bacteria. The derived amino acid sequence corresponds to a protein of Mr 40,439. Amino acid analysis and apparent Mr of endoglucanase C are consistent with the amino acid sequence as derived from the DNA sequencing data. A proposed N-terminal 21-aa residue leader (signal) sequence differs from other prokaryotic signal peptides and is non-functional in E. coli. Most of the protein bears no resemblance to the endoglucanases A, B, and D of the same organism. However, a short region of homology between endoglucanases A and C was identified, which is similar to the established active sites of lysozymes and to related sequences of fungal cellulases.  相似文献   

9.
10.
Uteroglobin has been purified from hare lung by gel filtration and chromatography on carboxymethyl-cellulose. Hare uteroglobin appears homogeneous by electrophoresis under both denaturing and nondenaturing conditions. Its chemical and immunological properties as well as its ability to bind progesterone are compared to those of rabbit uteroglobin. The two proteins have the same N-terminal residue (glycine) and both lack tryptophan but differ in amino acid composition. Sodium dodecyl sulfate-gel electrophoresis shows that hare uteroglobin is composed of two subunits of identical Mr (about 7000) held together by disulfide bridges. The amino acid composition indicates a subunit composed of 65-67 residues, which is compatible with the apparent Mr observed. Thus, hare uteroglobin appears to be slightly smaller than the rabbit protein. Hare uteroglobin partially reacts with anti-rabbit uteroglobin in a radioimmunoassay and also binds progesterone, although this binding is relatively unaffected by dithiothreitol. The synthesis of hare uteroglobin in the uterus appears to be rather insensitive to ovarian steroid hormones.  相似文献   

11.
12.
Extraction of a basement-membrane-producing mouse tumor with 6 M guanidine/HCl in the presence of protease inhibitors allowed the purification of the genuine form of the matrix protein nidogen (Mr = 150,000) and, in addition, two defined fragments (Mr = 130,000 and 100,000). Smaller fragments (Mr = 80,000 and 40,000) were obtained under conditions with less stringent control of endogenous proteolysis. Intact nidogen and the larger fragments were similar in amino acid and carbohydrate (about 5%) composition, the presence of a single polypeptide chain, conformational features as revealed by CD spectroscopy and all shared major epitopes located on the Mr = 80,000 fragment. Additional epitopes were found on intact nidogen and the Mr = 130,000 fragment. Nidogen and the various fragments possess different N-terminal amino acid sequences indicating a stepwise degradation from the N-terminal end of the molecule. Electron microscopical and hydrodynamic studies of the Mr = 80,000 fragment demonstrated a structure consisting of a globular head connected to a thin tail. Intact nidogen appears to contain a somewhat larger globule but the same tail, which is terminated at its opposite end by a second, smaller globular structure. The data suggest a multidomain structure for nidogen containing sites highly susceptible to proteolytic cleavage.  相似文献   

13.
The primary structure of human gamma-glutamyl transpeptidase   总被引:9,自引:0,他引:9  
A cDNA hybridizable to that of rat gamma-glutamyl transpeptidase (GGT) was cloned from a cDNA library of human fetal liver. The insert of the cDNA clone contained 1866 bp consisting of an open reading frame (ORF) of 1709 bp (569 amino acids (aa), N-terminal portion truncated) and a 135-bp 3'-untranslated region followed by a polyadenylated tail. In parallel, amino acid sequences of N-terminal portions of heavy and light chains of a purified human GGT were determined. Two stretches of amino acid sequences identical to the N-terminal sequences of heavy and light chains were found in the ORF. We therefore concluded that the clone is a cDNA for human GGT. From the amino acid sequence deduced from cDNA, the heavy and the light chains of the purified enzyme are estimated to be composed of 351 aa (Mr 38,336) and of 189 aa (Mr 20,000), respectively. The heavy chain is preceded by a signal peptide of at least 29 aa presumed to be cleaved by bromelain treatment. Six putative N-glycosylation sites are present in the heavy subunit region and one in the light subunit region. Primary structure and hydrophobicity profile are closely similar to those of rat GGT.  相似文献   

14.
The gene coding for Bacillus cereus ATCC7064 (mesophile) oligo-1,6-glucosidase was cloned within a 2.8-kb SalI-EcoRI fragment of DNA, using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. E. coli C600 bearing the hybrid plasmid pBCE4 accumulated oligo-1,6-glucosidase in the cytoplasm. The cloned enzyme coincided absolutely with B. cereus oligo-1,6-glucosidase in its Mr (65,000), in its electrophoretic behavior on a polyacrylamide gel with or without sodium dodecyl sulfate, in its isoelectric point (4.5), in the temperature dependence of its stability and activity, and in its antigenic determinants. The nucleotide sequence of B. cereus oligo-1,6-glucosidase gene and its flanking regions was determined with both complementary strands of DNA (each 2838 nucleotides). The gene consisted of an open reading frame of 1674 bp commencing with a ATG start codon and followed by a TAA stop codon. The amino acid sequence deduced from the nucleotide sequence predicted a protein of 558 amino acid residues with a Mr of 66,010. The amino acid composition and Mr were comparable with those of B. cereus oligo-1,6-glucosidase. The predicted N-terminal sequence of 10 amino acid residues agreed completely with that of the cloned ligo-1,6-glucosidase. The deduced amino acid sequence of B. cereus oligo-1,6-glucosidase was 72% and 42% similar to those from Bacillus thermoglucosidasius KP1006 (DSM2542, obligate thermophile) oligo-1,6-glucosidase and from Saccharomyces carlsbergensis CB11 alpha-glucosidase, respectively. Predictions of protein secondary structures along with amino acid sequence alignments demonstrated that B. cereus oligo-1,6-glucosidase may take the similar (alpha/beta)8-barrel super-secondary structure, a barrel of eight parallel beta-strands surrounded by eight alpha-helices, in its N-terminal active site domain as S. carlsbergensis alpha-glucosidase and Aspergillus oryzae alpha-amylase.  相似文献   

15.
Glucosyltransferases of oral streptococci, dextransucrases and alternansucrase of Leuconostoc mesenteroides, collectively referred to as glucansucrases, are large extracellular enzymes that synthesise glucans with a variety of structures and properties. A characteristic of all these glucansucrases is the possession of a C-terminal domain consisting of a series of tandem amino acid repeats. These repeat units are thought to interact with glucan but closely resemble the cell wall binding domain motif found in choline binding proteins in Streptococcus pneumoniae and surface-located proteins in a range of other bacteria. Analysis of dextransucrase and alternansucrase sequences has now shown that they also contain these repeat motifs in the N-terminal region, raising questions about their evolutionary origin and functional importance.  相似文献   

16.
The amino acid sequence of mammalian DNA methyltransferase has been deduced from the nucleotide sequence of a cloned cDNA. It appears that the mammalian enzyme arose during evolution via fusion of a prokaryotic restriction methyltransferase gene and a second gene of unknown function. Mammalian DNA methyltransferase currently comprises an N-terminal domain of about 1000 amino acids that may have a regulatory role and a C-terminal 570 amino acid domain that retains similarities to bacterial restriction methyltransferases. The sequence similarities among mammalian and bacterial DNA cytosine methyltransferases suggest a common evolutionary origin. DNA methylation is uncommon among those eukaryotes having genomes of less than 10(8) base pairs, but nearly universal among large-genome eukaryotes. This and other considerations make it likely that sequence inactivation by DNA methylation has evolved to compensate for the expansion of the genome that has accompanied the development of higher plants and animals. As methylated sequences are usually propagated in the repressed, nuclease-insensitive state, it is likely that DNA methylation compartmentalizes the genome to facilitate gene regulation by reducing the total amount of DNA sequence that must be scanned by DNA-binding regulatory proteins. DNA methylation is involved in immune recognition in bacteria but appears to regulate the structure and expression of the genome in complex higher eukaryotes. I suggest that the DNA-methylating system of mammals was derived from that of bacteria by way of a hypothetical intermediate that carried out selective de novo methylation of exogenous DNA and propagated the methylated DNA in the repressed state within its own genome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The Escherichia coli aroE gene encoding shikimate dehydrogenase was sequenced. The deduced amino acid sequence was confirmed by N-terminal amino acid sequencing and amino acid analysis of the overproduced protein. The complete polypeptide chain has 272 amino acid residues and has a calculated Mr of 29,380. E. coli shikimate dehydrogenase is homologous to the shikimate dehydrogenase domain of the fungal arom multifunctional enzymes and to the catabolic quinate dehydrogenase of Neurospora crassa.  相似文献   

18.
The gene 5 protein (g5p) of the bacteriophage Pf1 is a 144 residue single-stranded (ss) DNA binding protein involved in replication and packaging of the viral DNA. Compared to the gene 5 proteins of other filamentous bacteriophages, such as fd, the Pf1 g5p has an additional C-terminal sequence ( approximately 40 residues) with an unusual amino acid composition, being particularly rich in proline, glutamine and alanine. This C-terminal sequence is susceptible to limited proteolysis, in contrast to the globular N-terminal domain of the protein. The C-terminal sequence has been shown to play a role in the stabilisation of the protein-ssDNA complex. In the present study, the DNA sequence corresponding to the 38 amino acid residue C-terminal peptide has been cloned and expressed. A variety of biophysical techniques suggest that this peptide has a largely irregular conformation in solution, in contrast to the N-terminal globular domain that is principally beta-sheet. However, circular dichroism (CD) spectroscopy indicates that the peptide can be induced to form a structure that resembles a left-handed polyproline-like (P(II)) helix, suggesting that the C-terminal tail of the protein may adopt a more structured conformation in the appropriate physiological environment.  相似文献   

19.
Cadmium is a human carcinogen that likely acts via epigenetic mechanisms. Since DNA methylation alterations represent an important epigenetic event linked to cancer, the effect of cadmium on DNA methyltransferase (MeTase) activity was examined using in vitro (TRL1215 rat liver cells) and ex vivo (M.SssI DNA MeTase) systems. Cadmium effectively inhibited DNA MeTases in a manner that was noncompetitive with respect to substrate (DNA), indicating an interaction with the DNA binding domain rather than the active site. Based on these results, the effects of prolonged cadmium exposure on DNA MeTase and genomic DNA methylation in TRL1215 cells were studied. After 1 week of exposure to 0-2.5 microM cadmium, DNA MeTase activity was reduced (up to 40%) in a concentration-dependent fashion, while genomic DNA methylation showed slight but significant reductions at the two highest concentrations. After 10 weeks of exposure, the cells exhibited indications of transformation, including hyperproliferation, increased invasiveness, and decreased serum dependence. Unexpectedly, these cadmium-transformed cells exhibited significant increases in DNA methylation and DNA MeTase activity. These results indicate that, while cadmium is an effective inhibitor of DNA MeTase and initially induces DNA hypomethylation, prolonged exposure results in DNA hypermethylation and enhanced DNA MeTase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号