首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic organization in cerebellar dendritic spines   总被引:4,自引:0,他引:4       下载免费PDF全文
Three sets of filamentous structures were found to be associated with synaptic junctions in slices of cerebellar tissue prepared by rapid- freezing and freeze-etch techniques. The electron-dense fuzz subjacent to postsynaptic membranes corresponds to a web of 4-6-nm-diam filaments that were clearly visualized in rapid-frozen, freeze-etched preparations. Purkinje cell dendritic spines are filled with a meshwork of 5-7-nm filaments that were found to contact the spine membrane everywhere except at the synaptic junction, and extend through the neck of the spine into the parent dendrite. In addition, 8-10-nm microfilaments, possibly actin, were seen to be associated with the postsynaptic web and to extend into the body and neck of the spine. The arrangements and attachments of the filamentous elements in the Purkinje cell dendritic spine may account for its shape.  相似文献   

2.
The receptor-rich postsynaptic membrane of the elasmobranch electric organ was fixed by quick-freezing and then viewed by freeze-fracture, deep-etching and rotary-replication. Traditional freeze-fracture revealed a distinct, geometrical pattern of shallow 8.5-nm bumps on the E fracture-face, similar to the lattice which has been seen before in chemically fixed material, but seen less clearly than after quick-freezing. Fracture plus deep-etching brought into view on the true outside of this membrane a similar geometrical pattern of 8.5-nm projections rising out of the membrane surface. The individual projections looked like structures that have been seen in negatively stained or deep-etched membrane fragments and have been identified as individual acetylcholine receptor molecules. The surface protrusions were twice as abundant as the large intramembrane particles that characterize the fracture faces of this membrane, which have also been considered to be receptor molecules. Particle counts have always been too low to match the estimates of postsynaptic receptor density derived from physiological and biochemical studies; counts of surface projections, however, more closely matched these estimates. Rotary-replication of quick-frozen, etched postsynaptic membranes enhanced the visibility of these surface protuberances and illustrated that they often occur in dimers, tetramers, and ordered rows. The variations in these surface patterns suggested that in vivo, receptors in the postsynaptic membrane may tend to pack into "liquid crystals" which constantly appear, flow, and disappear in the fluid environment of the membrane. Additionally, deep-etching revealed a distinct web of cytoplasmic filaments beneath the postsynaptic membrane, and revealed the basal lamina above it; and delineated possible points of contact between these structures and the membrane proper.  相似文献   

3.
Unfertilized Paracentrotus lividus egg cytoskeleton is prepared by mild, nonionic detergent extraction at 4 degrees C in buffer systems containing either 2-methyl-2,4-pentanediol (hexylene glycol) or glycerol. These extractions allow the isolation of cytomatrices that maintain the egg form and are 70-80 micron in diameter. DNase inhibition assays show that actin is in polymerized form in these cytomatrices. Ultrastructural observations reveal that the cytoskeletons are made up essentially of 2 categories of filaments, 7-8-nm and 2-4-nm in diameter, respectively. After heavy meromyosin labelling, short, radiating actin filaments are seen in the cortical region, while longer actin filaments are found in the internal region of these cytomatrices. The 2-4-nm filaments of still unknown biochemical nature are organized in a meshwork. In contrast to results found with fertilized eggs, bundles of actin filaments and microtubules are absent; 8-13-nm filaments are not detected.  相似文献   

4.
Whole-mount stereo electron microscopy has been used to examine the cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor (AChR) clusters in cultures of Xenopus nerve and muscle cells. The cells were grown on Formvar-coated gold electron microscope (EM) finder grids. AChR clusters were identified in live cultures by fluorescence microscopy after labeling with tetramethylrhodamine-conjugated alpha-bungarotoxin. After chemical fixation and critical-point drying, the cytoplasmic specializations of identified cells were examined in whole mount under an electron microscope. In the presynaptic nerve terminal opposite to the AChR cluster, synaptic vesicles were clearly suspended in a lattice of 5-12- nm filaments. Stereo microscopy showed that these filaments directly contacted the vesicles. This lattice was also contiguous with the filament bundle that formed the core of the axon. At the AChR cluster, an increased cytoplasmic density differentiated this area from the rest of the cytoplasm. This density was composed of a meshwork of filaments with a mean diameter of 6 nm and irregularly shaped membrane cisternae 0.1-0.5 micron in width, which resembled the smooth endoplasmic reticulum. These membrane structures were interconnected via the filaments. Organelles that were characteristic of the bulk of the sarcoplasm such as the rough endoplasmic reticulum and the polysomes, were absent from the cytoplasm associated with the AChR cluster. These results indicate that the cytoskeleton may play an important role in the development and/or the maintenance of the neuromuscular synapse, including the release of transmitter in the nerve terminal and the clustering of AChRs in the postsynaptic membrane.  相似文献   

5.
We have undertaken some computer modeling studies of the cross-bridge observed by Reedy in insect flight muscle so that we investigate the geometric parameters that influence the attachment patterns of cross-bridges to actin filaments. We find that the appearance of double chevrons along an actin filament indicates that the cross-bridges are able to reach 10--14 nm axially, and about 90 degrees around the actin filament. Between three and five actin monomers are therefore available along each turn of one strand of actin helix for labeling by cross-bridges from an adjacent myosin filament. Reedy's flared X of four bridges, which appears rotated 60 degrees at successive levels on the thick filament, depends on the orientation of the actin filaments in the whole lattice as well as on the range of movement in each cross-bridge. Fairly accurate chevrons and flared X groupings can be modeled with a six-stranded myosin surface lattice. The 116-nm long repeat appears in our models as "beating" of the 14.5-nm myosin repeat and the 38.5-nm actin period. Fourier transforms of the labeled actin filaments indicate that the cross-bridges attach to each actin filament on average of 14.5 nm apart. The transform is sensitive to changes in the ease with which the cross-bridge can be distorted in different directions.  相似文献   

6.
A study was made of the synaptic actin ultrastructural localization in the hippocampal slices at long-lasting potentiation of area CA, using myosin subfragment-1 labeling. A specific qualitative ultrastructural sign of the potentiated hippocampal synapses was revealed for the first time - the formation in spines of rodlike bundles of actin filaments resembling the cilia. They penetrate the spine stalks to pass through the spine core towards the postsynaptic densities of active zones. The thinner bridges link the filament bundles with the actin cytoskeleton meshwork, with spine apparatus cisterns and with postsynaptic membranes of the active zones. Besides the increasing density of the presynaptic actin meshwork was shown. The changes in the actin cytoskeleton being taken into consideration, its contractile properties account for some morphofunctional features of the potentiated synapses known before and predict previously unknown ones.  相似文献   

7.
Whole-mount cell preparations of cultured rat 3Y1 cells were examined by stereo electron microscopy to identify the ultrastructural localization of concanavalin A (Con A) receptors in the plasma membrane, and to clarify the relationship between Con A receptors and cytoskeletal components. Well spread monolayer cells were extracted with saponin, briefly fixed, and then partially broken open with shearing force to facilitate the introduction of antibodies for identification of actin filaments. Stereo electron microscopy of such treated cells revealed a 3-dimensional image of filamentous structures such as fine filaments, microtubules (MT) and endoplasmic reticulum (ER) in the flattened areas of each cell. Just beneath the plasma membrane were meshworks of actin-containing fine filaments, as identified by an immunogold staining method. Microtubules and ER were observed to be either directly or indirectly associated with this meshwork. The broken open part of each cell exhibited a meshwork of filaments which were associated with the cytoplasmic surface of the plasma membrane. Some of the filaments were connected to the plasma membrane either by their ends or by their lateral surfaces. The localization of Con A receptors was examined by binding colloidal gold-labelled Con A to the surface of fixed, saponin-extracted cells. Virtually all gold particles bound externally at the same membrane sites where intracellular actin filaments attached internally. The observations strongly suggest that the distribution of Con A receptors was regulated by the underlying meshwork of actin filaments.  相似文献   

8.
The role of hyaluronic acid (HA) in embryonic mouse nasal process outgrowth was assessed following administration of Streptomyces hyaluronidase, an enzyme that degrades HA. Enzyme-treated and control embryos were compared morphologically 4 and 24 hr after treatment on day 11 of gestation. After 4 hr the nasal processes of treated embryos were reduced in volume compared to controls. This size reduction was associated with a decrease in the amount of extracellular space in the nasal processes and a change in mesenchymal cell shape. Extracellular matrix material observed in controls included collagenlike fibers, 25-30-nm granules, and a delicate meshwork of 3-4-nm filaments. Basal laminae exhibited filamentous and granular material that extended to the surface of underlying cells. Similar matrix constituents were observed in treated embryos with the exception of the 3-4-nm filaments, which probably represent HA. By 24 hr after treatment, embryonic circulation had ceased and heart beat was slow. The nasal processes of these embryos were very small, but their configuration was such that fusion had often begun. Thus the presence of HA appears to be important in maintenance of the normal volume of the nasal processes and in maintenance of normal mesenchymal cell morphology, but other factors appear to contribute to the change in process shape requisite for fusion.  相似文献   

9.
Myosin-V processively walks on actin filaments in a hand-over-hand fashion. The identical structures of the heads predict a symmetric hand-over-hand mechanism where regular, unidirectional rotation occurs during a 36-nm step. We investigated this by observing how fixed myosin-V rotates actin filaments. Actin filaments randomly rotated 90 degrees both clockwise and counter-clockwise during each step. Furthermore, ATP-dependent rotations were regularly followed by ATP-independent ones. Kinetic analysis indicated that the two 90 degrees rotations relate to the coordinated unbinding and rebinding of the heads with actin. We propose a 'brownian rotation hand-over-hand' model, in which myosin-V randomly rotates by thermally twisting its elastic neck domains during the 36-nm step. The brownian rotation may be advantageous for cargo transport through a crowded actin meshwork and for carrying cargoes reliably via multiple myosin-V molecules in the cell.  相似文献   

10.
Summary The cytoplasm of the electrocyte of Electrophorus electricus possesses a meshwork of 7-nm thick filaments distributed throughout the cell. Observation of stereopairs of transmission electron micrographs shows association of the filaments with the plasma membrane and the membranes of cytoplasmic organelles. Intense fluorescence, indicative of the presence of actin, was observed in the cytoplasm of electrocytes incubated in the presence of NBD-phallacidin or anti-actin antibodies.  相似文献   

11.
Abstract

We have used the electrocyte of Torpedo electric organ as a model system for the study of AchR stabilization in the post-synaptic membrane. Attention was focused on membrane cytoskeleton interactions in particular on a peripheral protein of 43 KD that is believed to participate in AchR immobilization.

Using immunocytochemical methods, we have shown that the cortical skeleton in Torpedo electrocyte displays a local differentiation proper for each specialized domain of the plasma membrane. In the postsynaptic membrane, characterized by an accumulation and a geometrical organization of the receptors in the plane of the membrane, the 43 KD protein participates in a submembraneous coating or “postsynaptic densities” that strictly codistribute with the AchR. The 43 KD protein might also account for the anchoring of intermediate-sized filaments.

The organization of the postsynaptic domain appears readily different from that of the non-innervated one where the membrane folds are maintained by a cortical meshwork of cytoskeletal proteins such as ankyrin, spectrin and oligomeric actin.

In conclusion, the asymmetrical organization of the cortical skeleton in the electrocyte offers a unique opportunity for the study of the specific aspects of membrane-skeleton interactions that take place in the postsynaptic domain.  相似文献   

12.
Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.  相似文献   

13.
The [URE3] prion is an inactive, self-propagating, filamentous form of the Ure2 protein, a regulator of nitrogen catabolism in yeast. The N-terminal "prion" domain of Ure2p determines its in vivo prion properties and in vitro amyloid-forming ability. Here we determined the overall structures of Ure2p filaments and related polymers of the prion domain fused to other globular proteins. Protease digestion of 25-nm diameter Ure2p filaments trimmed them to 4-nm filaments, which mass spectrometry showed to be composed of prion domain fragments, primarily residues approximately 1-70. Fusion protein filaments with diameters of 14-25 nm were also reduced to 4-nm filaments by proteolysis. The prion domain transforms from the most to the least protease-sensitive part upon filament formation in each case, implying that it undergoes a conformational change. Intact filaments imaged by cryo-electron microscopy or after vanadate staining by scanning transmission electron microscopy (STEM) revealed a central 4-nm core with attached globular appendages. STEM mass per unit length measurements of unstained filaments yielded 1 monomer per 0.45 nm in each case. These observations strongly support a unifying model whereby subunits in Ure2p filaments, as well as in fusion protein filaments, are connected by interactions between their prion domains, which form a 4-nm amyloid filament backbone, surrounded by the corresponding C-terminal moieties.  相似文献   

14.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

15.
In the X-ray diffraction pattern from oriented gels of actin-containing filaments sampling of layer lines indicating the development of a well-ordered pseudo-hexagonal lattice within the gels at interfilament spacings as large as 13 nm is observed. This value exceeds by 3 nm the largest estimate of an external diameter of pure f-actin. The development of layer line sampling is always accompanied by: (i) the appearance of strong forbidden meridional reflections on the 5.9- and 5.1-nm layer lines; (ii) a drastic intensification of the first (expected) 2.75-nm meridional reflection by a factor of about 4; (iii) the appearance of streaks, connecting near-meridional reflections on the 5.9-, 5.1-, and 37-nm layer lines; and (iv) a slight decrease in the number of subunits per turn of the basic f-actin helix. All these features strongly indicate that f-actin filaments are supercoiled and make regular local contacts between themselves, which may lead to periodic distortions of the mobile external domain in the actin subunits.  相似文献   

16.
To identify structures involved in the translocation of the synaptic vesicles towards the presynaptic membrane, an ultrastructural study has been undertaken by means of (1) the E-PTA stain and (2) the HMM-labeling procedure. Using serial sections of E-PTA stained nervous tissue, especially those made in transversal and tangential planes, the geometric order of the presynaptic grid and of its constituents has been described in detail. It consisted of dense projections having the shape of small truncated pyramids cut parallel to their hexagonal bases which rested on the electron-lucent presynaptic membrane. The dense projections were arranged at the points of equilateral triangles. Around each dense projection, six asymmetric hexagonal holes were seen to be arrayed in an hexagonal pattern, forming thus the presynaptic sieve. From the spiny tops of the dense projections, which appeared as specialized structures of the dense material coating the inner surface of the plasma membrane at the level of the synaptic cleft, fine filaments, 40--60 A in diameter, radiated and formed a three-dimensional meshwork pervading the presynaptic bag. The dense cytoplasmic coating delineating the plasma membrane served as anchor points for these microfilaments. Upon incubation with rabbit skeletal muscle HMM the microfilaments underwent specific structural changes, consisting of: (1) a striking increase in diameter; (2) the association of periodic and polarized substructures with their surfaces. The synaptic vesicles and mitochondria were seen to be attached to the numerous HMM-decorated filaments or enmeshed in the network formed by these filaments. The actin-like filaments were anchored to the plasma membrane at many points and to the presynaptic dense projections. Following incubation in the buffer alone or in buffer HMM solutions containing Na+ pyrophosphate or ATP, no arrowheaded structures were observed. Thus, a network consisting of actin-like filaments was demonstrated in the presynaptic bag. Of particular interest was the structural relation of the actin-like filaments with the occasional, tapered myosin-like filaments. The role of the presynaptic actin-like network in the transport of synaptic vesicles towards the presynaptic membrane by a mechanism of chemomechanical transduction is discussed. In the postsynaptic dendrite or dendritic spine, a filamentous network was observed to be attached to the subsynaptic web by means of the E-PTA stain and of the HMM-labeling procedure. The occurrence of an actin-like meshwork in the postsynaptic region is suggested to produce changes in the macromolecular configuration of the postsynaptic membrane by a "mechanoenzyme" system similar to that described in the mitochondrial membrane.  相似文献   

17.
With the exception of keratinocytes and some types of cultured cells, ciliated cells appear to be the major cell type which contains the most developed cytokeratin meshwork. We report, here, on the intermediate filament (IF) organization in ciliated cells of the quail oviduct using ultrastructural and immunocytochemical techniques. Special attention was focused on the relationships between IF and other cell organelles. The meshwork of IFs appears as a subapical disk constituted of separate bundles mainly composed of interwoven 10-nm filaments. From this subapical region, a descending bundle connects the array of IFs occupying the basal part of the cell. The nucleus is maintained in a loose network of IFs. In ciliated cells there are no free centrioles, but IFs are related to centriolar appendages (striated rootlets).  相似文献   

18.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation.  相似文献   

19.
Neurofilaments (NFs) are neuron-specific intermediate filaments. The NFs were isolated from bovine spinal cord by differential centrifugation. The NFs were detected with electron microscopy and scanning tunneling microscopy (STM). Under STM, two kinds of sidearm of NFs were revealed: one was short, the other was long. They were arrayed along the 10-nm width core filaments one by one. The intervals between two adjacent long sidearms or two short sidearms were 20—22 nm, while those between two adjacent long and short sidearms were 10—11 nm. It was proposed that the rod domain of NF triplet prnteins was 3/4-staggered. The assembly properties of NF triplet proteins were also studied. Immuno-colloidal-gold labeling assay showed that NF-M and NF-H are able to co-assemble into long filaments with NF-L. NF-M and NF-H can also co-constitute into winding filaments.  相似文献   

20.
Neurofilaments (NFs) are neuron-specific intermediate filaments. The NFs were isolated from bovine spinal cord by differential centrifugation. The NFs were detected with electron microscopy and scanning tunneling microscopy (STM). Under STM, two kinds of sidearm of NFs were revealed: one was short, the other was long. They were arrayed along the 10-nm width core filaments one by one. The intervals between two adjacent long sidearms or two short sidearms were 20–22 nm, while those between two adjacent long and short sidearms were 10–11 nm. It was proposed that the rod domain of NF triplet proteins was 3/4-staggered. The assembly properties of NF triplet proteins were also studied. Immuno-colloidal-gold labeling assay showed that NF-M and NF-H are able to co-assemble into long filaments with NF-L. NF-M and NF-H can also co-constitute into winding filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号