首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Partanen  N B?ck 《Histochemistry》1979,61(3):291-300
The relationship between the intensity of combined formaldehyde-chloral vapour-induced fluorescence and the concentration of amino-terminal tryptophyl-peptide in model experiments was found to be non-linear. At a certain concentration the intensity began to increase more slowly than the concentration, and when the concentration further increased the intensity even began to decrease. Based on the studies previously reported and on the above findings it seems that fluorescence induced by combined formaldehyde-chloral vapour, glyoxylic acid vapour and possibly also other combined formaldehyde and carbonyl compounds in the hypophyseal cells containing amino-terminal tryptophyl-peptides is quenched in normal conditions due to the high local concentration. Thus, small to moderate changes in the amounts of amino-terminal tryptophyl-peptides cannot be observed by measuring the fluorescence intensity. In tissue experiments the intensity of combined formaldehyde-chloral vapour-induced fluorescence in the rat pars intermedia was measured after reserpine treatment, which decreases the number of hormone storage granules as demonstrated electron microscopically. The fluorescence intensity measurements were combined with an estimation of the amounts of amino-terminal tryptophyl-peptides extracted from hypophyses and separated in thin-layer chromatography, and subsequently demonstrated by combined formaldehyde-chloral vapour and a protein stain (amido black). Reserpine treatment decreased the fluorescence intensity in the pars intermedia and in thin-layer chromatography, and the staining of the fluorescent band with amido black was also decreased. Amino-terminal tryptophyl-peptides appeared to be depleted from the pars intermedia cells together with endorphins and other hormones of the ACTH/MSH cells containing tryptophan.  相似文献   

2.
Summary The relationship between the intensity of combined formaldehydechloral vapour-induced fluorescence and the concentration of amino-terminal tryptophyl-peptide in model experiments was found to be non-linear. At a certain concentration the intensity began to increase more slowly than the concentration, and when the concentration further increased the intensity even began to decrease. Based on the studies previously reported and on the above findings it seems that fluorescence induced by combined formaldehyde-chloral vapour, glyoxylic acid vapour and possibly also other combined formaldehyde and carbonyl compounds in the hypophyseal cells containing amino-terminal tryptophyl-peptides is quenched in normal conditions due to the high local concentration. Thus, small to moderate changes in the amounts of amino-terminal tryptophyl-peptides cannot be observed by measuring the fluorescence intensity. In tissue experiments the intensity of combined formaldehyde-chloral vapour-induced fluorescence in the rat pars intermedia was measured after reserpine treatment, which decreases the number of hormone storage granules as demonstrated electron microscopically. The fluorescence intensity measurements were combined with an estimation of the amounts of amino-terminal tryptophyl-peptides extracted from hypophyses and separated in thin-layer chromatography, and subsequently demonstrated by combined formaldehyde-chloral vapour and a protein stain (amido black). Reserpine treatment decreased the fluorescence intensity in the pars intermedia and in thin-layer chromatography, and the staining of the fluorescent band with amido black was also decreased. Amino-terminal tryptophyl-peptides appeared to be depleted from the pars intermedia cells together with endorphins and other hormones of the ACTH/MSH cells containing tryptophan.This study was supported by grant from J.K. Paasikivi Foundation.  相似文献   

3.
S Partanen 《Histochemistry》1978,56(2):147-154
Methods for the isolation and thin-layer chromatographic identification of amino-terminal tryptophyl-peptides presumably responsible for histochemical tryptophyl-peptide reactions in the ACTH cells of the rat hypophysis are described. In the hypophyseal extract several tryptophylpeptide bands--depending on the homogenization solution--were demonstrated on thin-layer chromatograms. Tryptophyl-peptides were demonstrated from their fluorescence induced 1) with glyoxylic acid (glyoxylic acid introduced into the homogenization solution), 2) by exposure of the chromatographic plates to combined formaldehyde and chloral vapour or 3) by exposure to combined formaldehyde and acetyl chloride vapour. A positive PAS reaction was demonstrated in some tryptophyl-peptide bands. Thus, some tryptophylpeptides seem to contribute to the observed PAS positivity of the ACTH cells.  相似文献   

4.
《BBA》1986,851(3):407-415
Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore.  相似文献   

5.
Nitroso-naphthol reacts with tyrosine residues of peptides (and probably also proteins) to yield intensely fluorescent condensation products. This reaction forms the basis of a fluorescence histochemical procedure designed to demonstrate cells that are rich in tyrosine-containing peptides or proteins. In models the method was found to be specific for p-hydroxylated phenolic compounds. Fluorescence was induced also following formaldehyde vapour fixation. With the nitroso-naphthol technique the zymogen granules of gastric chief cells, intestinal Paneth cells, pancreatic acinar cells and certain peptide hormone-secreting cells such as the GH cells in the adenohypophysis, the insulin cells of the pancreatic islets and the calcitonin cells of the thyroid gave intense fluorescence with spectral characteristics indistinguishable from those ofthe fluorophores of tyrosine-containing peptides. In addition, a population of endocrine-like cells in the antral and intestinal mucosa of certain mammals displayed fluorescence.  相似文献   

6.
Summary Methods for the isolation and thin-layer chromatographic identification of amino-terminal tryptophyl-peptides presumably responsible for histochemical tryptophyl-peptide reactions in the ACTH cells of the rat hypophysis are described. In the hypophyseal extract several tryptophylpeptide bands — depending on the homogenization solution — were demonstrated on thin-layer chromatograms. Tryptophyl-peptides were demonstrated from their fluorescence induced 1) with glyoxylic acid (glyoxylic acid introduced into the homogenization solution), 2) by exposure of the chromatographic plates to combined formaldehyde and chloral vapour or 3) by exposure to combined formaldehyde and acetyl chloride vapour. A positive PAS reaction was demonstrated in some tryptophyl-peptide bands. Thus, some tryptophyl-peptides seem to contribute to the observed PAS positivity of the ACTH cells.This investigation was supported by grants from the Jalmari and Rauha Ahokas Foundation and the J.K. Paasikivi Foundation  相似文献   

7.
Summary Nitroso-naphthol reacts with tyrosine residues of peptides (and probably also proteins) to yield intensely fluorescent condensation products. This reaction forms the basis of a fluorescence histochemical procedure designed to demonstrate cells that are rich in tyrosine-containing peptides or proteins. In models the method was found to be specific for p-hydroxylated phenolic compounds. Fluorescence was induced also following formaldehyde vapour fixation. With the nitroso-naphthol technique the zymogen granules of gastric chief cells, intestinal Paneth cells, pancreatic acinar cells and certain peptide hormone-secreting cells such as the GH cells in the adenohypophysis, the insulin cells of the pancreatic islets and the calcitonin cells of the thyroid gave intense fluorescence with spectral characteristics indistinguishable from those of the fluorophores of tyrosine-containing peptides. In addition, a population of endocrine-like cells in the antral and intestinal mucosa of certain mammals displayed fluorescence.Grant support from the Swedish Medical Research Council (04X-04499)  相似文献   

8.
In order to investigate the role of lysine residues in the interaction of bilirubin with bovine serum albumin, five succinylated preparations of albumin, namely: 23%, 39%, 49%, 55% and 87%, were prepared, and their conformational and bilirubin-binding properties were studied by the techniques of gel filtration, ultraviolet and visible spectroscopy, and fluorescence quenching. Gel filtration experiments performed at pH 7.0 and ionic strengths 0.15 and 1.0 suggested that the albumin molecule undergoes gradual disorganization with increase in succinylation. The Stokes radius and frictional ratio at ionic strength 0.15 increased from 3.7 nm and 1.36, respectively, for the native protein to 6.3 nm and 2.26 for maximally (87%) succinylated albumin. Interestingly, increase in ionic strength to 1.0 caused significant refolding in succinylated preparations as evidenced by a decrease in Stokes radius and frictional ratio (5.3 nm and 1.90 for 87% succinylated albumin). Progressive succinylation produced a steady decline in the intensity of bilirubin-induced fluorescence quenching, and in the visible spectral changes of the bilirubin-albumin complex at 480 nm. Both of these changes had a good correlation with increase in Stokes radius. Increase in ionic strength to 1.0 produced a significant reversal in these properties. From these results we conclude that probably none of the surface lysine residues is involved in bilirubin-albumin interaction, and that if lysine residues are involved in this interaction they must be buried in the protein interior.  相似文献   

9.
Herein, the binding of 1-methyl-3-octylimidazolium chloride [OMIM][Cl] ionic liquid with hen egg white lysozyme (HEWL) has been studied using fluorescence, time resolved fluorescence, UV–visible and circular dichroism (CD) spectroscopy, in combination with computational study. The fluorescence results revealed that [OMIM][Cl] quenches the fluorophore of HEWL through static quenching mechanism. The calculated thermodynamic parameters show that [OMIM][Cl] bind with HEWL through hydrophobic interactions. In addition, the negative value of Gibbs energy change (?G) indicates that the binding process was spontaneous. Furthermore, UV–vis and CD results indicate that [OMIM][Cl] induce the conformational change in HEWL and increase its enzymatic activity. Additionally, molecular docking results showed that [OMIM][Cl] binds at the active site of HEWL where both the fluorophore residues (Trp108 and Trp62) and the catalytic residues (Glu35 and Asp52) reside. Molecular dynamic simulation results show the reduction of intra-molecular hydrogen bond of HEWL when it binds with [OMIM][Cl].  相似文献   

10.
Several spectroscopic approaches namely fluorescence, time‐resolved fluorescence, UV‐visible, and Fourier transform infra‐red (FT‐IR) spectroscopy were employed to examine the interaction between ethane‐1,2‐diyl bis(N,N‐dimethyl‐N‐hexadecylammoniumacetoxy)dichloride (16‐E2‐16) and bovine serum albumin (BSA). Fluorescence studies revealed that 16‐E2‐16 quenched the BSA fluorescence through a static quenching mechanism, which was further confirmed by UV–visible and time‐resolved fluorescence spectroscopy. In addition, the binding constant and the number of binding sites were also calculated. The thermodynamic parameters at different temperatures (298 K, 303 K, 308 K and 313 K) indicated that 16‐E2‐16 binding to BSA is entropy driven and that the major driving forces are electrostatic interactions. Decrease of the α‐helix from 53.90 to 46.20% with an increase in random structure from 22.56 to 30.61% were also observed by FT‐IR. Furthermore, the molecular docking results revealed that 16‐E2‐16 binds predominantly by electrostatic and hydrophobic forces to some residues in the BSA sub‐domains IIA and IIIA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The conformation of bovine serum albumin (BSA), a pyridoxal phosphate (pyridoxal-P) carrier, was investigated by using uv/visible spectrophotometry, fluorescence spectroscopy, circular dichroism, and differential scanning microcalorimetry. Upon interacting with pyridoxal-P, the uv/visible absorption spectrum of BSA exhibits peaks at 330 and 392 nm due to the formation of a Schiff base. Pyridoxal-P quenches the fluorescence emission intensity (excited at 295 or 280 nm) by 24% and enhances fluorescence steady-state polarization of BSA by 20%. These observations suggest a conformational change in BSA when it interacts with pyridoxal-P. However, this conformational change appears to be small since circular dichroism showed only a 2-4% decrease in the alpha-helical content of BSA and no change in the beta-sheet content, and differential scanning microcalorimetry yielded only a 10% change in the enthalpy of thermal unfolding of BSA. 2-Aminoethylisothiouronium bromide, an antioxidant, causes no effect on either uv/visible absorption spectrum or fluorescence emission intensity of BSA, suggesting that BSA lacks sensitive sulfhydryl groups. To help in understanding BSA as a carrier for pyridoxal-P, the results were compared with those for glutamate decarboxylase (GAD), a pyridoxal-P-dependent protein, which requires pyridoxal-P as the cofactor for activity. Although BSA and GAD exhibit comparable molecular weights (66430 versus 65300), numbers of amino acid residues (582 versus 585), and binding affinity (>10(6) M-1), distinct conformational alterations occur between the two proteins upon interacting with pyridoxal-P: a small conformational change for BSA versus a large conformational change for GAD. In contrast to the case of BSA, AET causes significant effects on both the uv/visible spectrum and fluorescence emission intensity of GAD, because GAD contains sensitive sulfhydryl groups. Factors such as disulfide bond and active site sequence were discussed to understand BAS as a carrier for pyridoxal-P and a pyridoxal-P-independent protein.  相似文献   

12.
1. l-Glutamate decarboxylase (EC 4.1.1.15) from Clostridium perfringens was inactivated by exposure to visible light at pH6.2. 2. Inactivation does not occur at pH4.6 or in the absence of bound pyridoxal phosphate. 3. On prolonged photo-oxidation six histidine residues per molecule of enzyme were destroyed. 4. The loss of six cysteine residues per molecule occurred both in irradiated samples and in controls oxygenated in the dark. 5. This dark-oxidation of cysteine residues is apparently required before the photo-oxidation process. 6. The absorbance, fluorescence and circular-dichroism properties of the enzyme as well as its elution volume during Sephadex gel-filtration were unaffected by prolonged irradiation. 7. However, an apparently homogeneous product of photo-oxidation could be separated from the control enzyme by ion-exchange chromatography. 8. The K(m) for l-glutamate was unchanged in an irradiated sample retaining 22% of control activity. 9. These data and the catalytic role of imidazole residues at the active sites of amino acid decarboxylases are discussed.  相似文献   

13.
Summary Fluorescence excitation and emission spectra of the formaldehyde-induced fluorophore of 5-hydroxytryptamine in a Sephadex model have been examined following exposure to hydrochloric acid or ammonia vapour. Exposure to hydrochloric acid vapour produced excitation spectra with broad maxima centred around 400 nm, whilst exposure to ammonia vapour intensified the maximum normally seen at approximately 450 nm relative to that seen at 400 nm. The emission maximum was generally broad and poorly defined following exposure to hydrochloric acid vapour; exposure to ammonia vapour had little effect on its location. Exposure of the formaldehyde-induced fluorophore in models containing 5-hydroxytryptamine to 300 nm irradiation caused a substantial shift in the position of the emission maximum; a concomitant increase in the fluorescence intensity was also observed. When the fluorescence present in duodenal enterochromaffin cells was examined after similar treatments, a number of differences in the response of the fluorophore were noted.  相似文献   

14.
3‐Mercaptopropionic Acid‐modified CdTe quantum dots (QDs) were synthesized and characterized by infrared, fluorescence, and ultraviolet–visible absorption spectra and Nano‐ZetaSizer measurements. Then the interaction between QDs and hemoglobin was studied to investigate the effects of QDs on the structure and function of hemoglobin by using a variety of spectroscopy methods and isothermal titration calorimetry. The results showed van der Waals forces and hydrogen bonding predominantly played major roles in the binding. The intrinsic fluorescence of hemoglobin was quenched with changes to the microenvironment of tyrosine and tryptophan residues and complex conformational changes of hemoglobin were induced with the loosening and unfolding skeleton. However, the heme in hemoglobin was still stable, indicating that the main physiological function of hemoglobin might not be significantly inhibited. This study will provide a new strategy to study the biological toxicity of QDs at the molecular level.  相似文献   

15.
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole bilin-binding photoreceptors of cyanobacteria that exhibit high spectral diversity, gaining attention in optogenetics and bioimaging applications. Several engineering studies on CBCRs were attempted, especially for designing near-infrared (NIR) fluorescent proteins with longer fluorescence wavelengths. However, despite continuous efforts, a key component regulating fluorescence emission property in CBCRs is still poorly understood. As a model system, we focused on red/green CBCR Slr1393g3, from the unicellular cyanobacterium Synechocystis sp. PCC 6803 to engineer Pr to get far-red light-emitting property. Energy profiling and pairwise structural comparison of Slr1393g3 variants effectively reveal the mutations that are critical to the fluorescence changes. H497 seems to play a key role in stabilizing the chromophore environment, especially the α3 helix, while H495, T499, and Q502 are potential key residues determining fluorescence emission peak wavelength. We also found that mutations of α2 and α4 helical regions are closely related to the chromophore binding stability and likely affect fluorescence properties. Taken together, our computational analysis suggests that the fluorescence of Slr1393g3 is mainly controlled by the stabilization of the chromophore binding pocket. The predicted key residues potentially regulating the fluorescence emission property of a red/green CBCR will be advantageous for designing improved NIR fluorescent protein when combined with in vitro molecular evolution approaches.  相似文献   

16.
Spectral studies of horse heart porphyrin cytochrome c   总被引:1,自引:0,他引:1  
Removal of the heme iron from cytochrome c to generate porphyrin cytochrome c relieves the quenching of porphyrin fluorescence and enhances the fluorescence of the single tryptophan residue and the 4 tyrosine residues. The intensity of the porphyrin fluorescence is not perturbed by denaturation of the protein at neutral pH using either urea or guanidine hydrochloride. However, the amplitude of tryptophan fluorescence is increased by these denaturants from 5 to about 85% of a model tryptophan residue using solutions of 2 microM tryptophan. In contrast to cytochrome c, the tryptophan fluorescence amplitude of denatured porphyrin cytochrome c is independent of pH over the range pH 3.0 to 7.4. Acidification of solutions of either native or denatured porphyrin cytochrome c markedly alters both the visible absorbance and fluorescence of the protein consistent with protonation of two pyrrole nitrogens on the porphyrin. Preliminary analysis of the spectral changes occurring in the acid transition suggests the presence of an intermediate form having only one of these two pyrrole nitrogens protonated.  相似文献   

17.
Powl AM  Wright JN  East JM  Lee AG 《Biochemistry》2005,44(15):5713-5721
The hydrophobic thickness of a membrane protein is an important parameter, defining how the protein sits within the hydrocarbon core of the lipid bilayer that surrounds it in a membrane. Here we show that Trp scanning mutagenesis combined with fluorescence spectroscopy can be used to define the hydrophobic thickness of a membrane protein. The mechanosensitive channel of large conductance (MscL) contains two transmembrane alpha-helices, of which the second (TM2) is lipid-exposed. The region of TM2 that spans the hydrocarbon core of the bilayer when MscL is reconstituted into bilayers of dioleoylphosphatidylcholine runs from Leu-69 to Leu-92, giving a hydrophobic thickness of ca. 25 A. The results obtained using Trp scanning mutagenesis were confirmed using Cys residues labeled with the N-methyl-amino-7-nitroben-2-oxa-1,3-diazole [NBD] group; both fluorescence emission maxima and fluorescence lifetimes for the NBD group are sensitive to solvent dielectric constant over the range (2-40) thought to span the lipid headgroup region of a lipid bilayer. Changing phospholipid fatty acyl chain lengths from C14 and C24 results in no significant change for the fluorescence of the interfacial residues, suggesting very efficient hydrophobic matching between the protein and the surrounding lipid bilayer.  相似文献   

18.
Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.  相似文献   

19.
We report the combined use of real-time photo-CIDNP NMR and stopped-flow fluorescence techniques to study the kinetic refolding of a set of mutants of a small globular protein, HPr, in which each of the four phenylalanine residues has in turn been replaced by a tryptophan residue. The results indicate that after refolding is initiated, the protein collapses around at least three, and possibly all four, of the side-chains of these residues, as (i) the observation of transient histidine photo-CIDNP signals during refolding of three of the mutants (F2W, F29W, and F48W) indicates a strong decrease in tryptophan accessibility to the flavin dye; (ii) iodide quenching experiments show that the quenching of the fluorescence of F48W is less efficient for the species formed during the dead-time of the stopped-flow experiment than for the fully native state; and (iii) kinetic fluorescence anisotropy measurements show that the tryptophan side-chain of F48W has lower mobility in the dead-time intermediate state than in both the fully denatured and fully native states. The hydrophobic collapse observed for HPr during the early stages of its folding appears to act primarily to bury hydrophobic residues. This process may be important in preventing the protein from aggregating prior to the acquisition of native-like structure in which hydrophobic residues are exposed in order to play their role in the function of the protein. The phenylalanine residue at position 48 is likely to be of particular interest in this regard as it is involved in the binding to enzymes I and II that mediates the transfer of a phosphoryl group between the two enzymes.  相似文献   

20.
Fluorescence spectra of a 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) fermentation culture broth were combined with measurable process variables for off-line and on-line process monitoring. Culture broth fluorescence in UV and visible ranges was acquired by a fiber optic LCD array spectrometer. Process dynamics was followed on-line using a fiber optic probe attached to an external recirculation loop of the bioreactor. Partial least squares and stepwise regression methods were used to correlate measurable process parameters with the components of the fluorescence spectra. Both methods provided adequate approximation of yeast density, HEMF, glucose, and ethanol concentrations from fluorescence spectra. HEMF production was observed during the oxido-reductive growth phase when there was a lack of measurable oxygen in the culture broth and an excess of glucose. The addition of glucose resulted in the rapid production of HEMF and other metabolite intermediates such as ethanol, acetate, and glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号