首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

2.
Bacterial endospores exhibit extreme resistance to most conditions that rapidly kill other life forms, remaining viable in this dormant state for centuries or longer. While the majority of Bacillus subtilis dormant spores germinate rapidly in response to nutrient germinants, a small subpopulation termed superdormant spores are resistant to germination, potentially evading antibiotic and/or decontamination strategies. In an effort to better understand the underlying mechanisms of superdormancy, membrane-associated proteins were isolated from populations of B. subtilis dormant, superdormant, and germinated spores, and the relative abundance of 11 germination-related proteins was determined using multiple-reaction-monitoring liquid chromatography-mass spectrometry assays. GerAC, GerKC, and GerD were significantly less abundant in the membrane fractions obtained from superdormant spores than those derived from dormant spores. The amounts of YpeB, GerD, PrkC, GerAC, and GerKC recovered in membrane fractions decreased significantly during germination. Lipoproteins, as a protein class, decreased during spore germination, while YpeB appeared to be specifically degraded. Some protein abundance differences between membrane fractions of dormant and superdormant spores resemble protein changes that take place during germination, suggesting that the superdormant spore isolation procedure may have resulted in early, non-committal germination-associated changes. In addition to low levels of germinant receptor proteins, a deficiency in the GerD lipoprotein may contribute to heterogeneity of spore germination rates. Understanding the reasons for superdormancy may allow for better spore decontamination procedures.  相似文献   

3.
Expression of the gene of glutamyl endopeptidase from Bacillus intermedius (gseBi) cloned on the plasmid pV has been studied in Bacillus subtilis recombinant strains with mutations of the regulatory proteins involved in sporogenesis and spore germination. It has been established that inactivation of the regulatory protein Spo0A involved in sporulation initiation resulted in a decrease in the expression of the gseBi gene by 65% on average. A mutation in the gene of the sensor histidine kinase kinA had no effect on the biosynthesis of the enzyme. Inactivation of Ger proteins regulating bacterial spore germination resulted in a 1.5-5-fold decrease in glutamyl endopeptidase activity. It has been concluded that expression of the B. intermedius glutamyl endopeptidase gene from plasmid pV in recombinant cells of B. subtilis is under impaired control by the regulatory system of Spo0F/Spo0A phosphorelay, which participates in sporulation initiation. The regulatory Ger proteins responsible for spore germination also affect expression of the gene of this enzyme.  相似文献   

4.
A proteolytic activity present in spores of Bacillus megaterium has previously been implicated in the initiation of hydrolysis of the A, B, and C proteins which are degraded during spore germination. Four mutants of B. megaterium containing 20 to 30% of the normal level of spore proteolytic activity have been isolated. Partial purification of the protease from wild-type spores by a reviewed procedure resulted in the resolution of spore protease activity on the A, B, and C proteins into two peaks--a major one (protease II) and a minor one (protease I). The protease mutants tested lacked active protease II. All of the mutants exhibited a decreased rate of degradation of the A, B, and C proteins during spore germination at 30 degrees C, but degradation of the proteins did occur. Degradation of the A, B, and C proteins during germination of the mutant spores was decreased neither by blockade of ATP production nor by germination at 44 degrees C. Initiation of spore germination was normal in all four mutants, and all four mutants went through outgrowth, grew, and sporulated normally in rich medium. Similarly, outgrowth of spores of two of the four mutants was normal in minimal medium at 30 degrees C. In the two mutants studied, the kinetics of loss of spore heat resistance and spore UV light resistance during germination were identical to those of wild-type spores. This indicates that the A, B, and C proteins alone are not sufficient to account for the heat or UV light resistance of the dormant spore.  相似文献   

5.
The plasma membrane of the cereal aleurone layer is the site of perception of germination signals and release of enzymes to the starchy endosperm. Analysis of membrane proteins is challenging due to their hydrophobicity and low abundance; thus, little is known about the membrane proteins involved in seed germination. A membrane fraction highly enriched for the plasma membrane H+-ATPase was prepared from barley aleurone layers by aqueous two-phase partitioning. Because detergent and salt washes did not efficiently remove soluble proteins from the membrane preparations, an alternative procedure was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral membrane proteins with relatively low levels of soluble contaminating proteins. Forty-six proteins associated with barley aleurone plasma membranes were identified, including proteins with more than 10 transmembrane domains. Among the identified proteins were two new isoforms of the plasma membrane H+-ATPase, two proteins possibly involved in ion-channel regulation, and two proteins of unknown function. This represents the first analysis of membrane proteins involved in seed germination using a proteomics approach.  相似文献   

6.
GerD of Bacillus subtilis is a protein essential for normal spore germination with either L-alanine or a mixture of L-asparagine, D-glucose, D-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to localize GerD within spores, FLAG-tagged GerD constructs were made, found to be functional in spore germination, and detected in immunoblots of spore extracts as not only monomers but also dimers and trimers. Upon fractionation of spore extracts, GerD-FLAG was found in the inner membrane fraction from dormant spores and was present at approximately 2,000 molecules/spore. GerD-FLAG in the inner membrane fraction was solubilized by Triton X-100, suggesting that GerD is a lipoprotein, and the protein was also solubilized by 0.5 M NaCl. GerD-FLAG was not processed proteolytically in a B. subtilis strain lacking gerF (lgt), which encodes prelipoprotein diacylglycerol transferase (Lgt), indicating that when GerD does not have a diacylglycerol moiety, signal sequence processing does not occur. However, unprocessed GerD-FLAG still gave bands corresponding to monomers and dimers of slightly higher molecular weight than that of GerD-FLAG from a strain with Lgt, further suggesting that GerD is a lipoprotein. Upon spore germination, much GerD became soluble and then appeared to be degraded as the germinated spores outgrew and initiated vegetative growth. All of these results suggest that GerD is a lipoprotein associated with the dormant spore's inner membrane that may be released in some fashion from this membrane upon spore germination.  相似文献   

7.
Yeast two-hybrid and Far Western analyses were used to detect interactions between Bacillus subtilis spores' nutrient germinant receptor proteins and proteins encoded by the spoVA operon, all of which are involved in spore germination and located in the spores' inner membrane. These analyses indicated that two subunits of the GerA nutrient germinant receptor interact, consistent with previous genetic data, and that some GerA proteins interact with SpoVAD and some with SpoVAE. SpoVA proteins appear to be involved in the release of the spore's dipicolinic acid during spore germination, an event triggered by the binding of nutrient germinants to their receptors. Consequently, these new findings suggest that nutrient germinant receptors physically contact SpoVA proteins, and presumably this is a route for signal transduction during spore germination.  相似文献   

8.
The gerP1 transposon insertion mutation of Bacillus cereus is responsible for a defect in the germination response of spores to both L-alanine and inosine. The mutant is blocked at an early stage, before loss of heat resistance or release of dipicolinate, and the efficiency of colony formation on nutrient agar from spores is reduced fivefold. The protein profiles of alkaline-extracted spore coats and the spore cortex composition are unchanged in the mutant. Permeabilization of gerP mutant spores by coat extraction procedures removes the block in early stages of germination, although a consequence of the permeabilization procedure in both wild type and mutant is that late germination events are not complete. The complete hexacistronic operon that includes the site of insertion has been cloned and sequenced. Four small proteins encoded by the operon (GerPA, GerPD, GerPB, and GerPF) are related in sequence. A homologous operon (yisH-yisC) can be found in the Bacillus subtilis genome sequence; null mutations in yisD and yisF, constructed by integrational inactivation, result in a mutant phenotype similar to that seen in B. cereus, though somewhat less extreme and equally repairable by spore permeabilization. Normal rates of germination, as estimated by loss of heat resistance, are also restored to a gerP mutant by the introduction of a cotE mutation, which renders the spore coats permeable to lysozyme. The B. subtilis operon is expressed solely during sporulation, and is sigma K-inducible. We hypothesize that the GerP proteins are important as morphogenetic or structural components of the Bacillus spore, with a role in the establishment of normal spore coat structure and/or permeability, and that failure to synthesize these proteins during spore formation limits the opportunity for small hydrophilic organic molecules, like alanine or inosine, to gain access to their normal target, the germination receptor, in the spore.  相似文献   

9.
Sporulation is a developmental variation of the yeast life cycle whereby four spores are produced within a diploid cell, with proliferation resuming after germination. The GAS family of glycosylphosphatidylinositol-anchored glucan-remodeling enzymes exemplifies functional interplay between paralogous genes during the yeast life cycle. GAS1 and GAS5 are expressed in vegetative cells and repressed during sporulation while GAS2 and GAS4 exhibit a reciprocal pattern. GAS3 is weakly expressed in all the conditions and encodes an inactive protein. Although Gas1p functions in cell wall formation, we show that it persists during sporulation but is relocalized from the plasma membrane to the epiplasm in a process requiring End3p-mediated endocytosis and the Sps1 protein kinase of the p21-activated kinase family. Some Gas1p is also newly synthesized and localized to the spore membrane, but this fraction is dispensable for spore formation. By way of contrast, the Gas2-Gas4 proteins, which are essential for spore wall assembly, are rapidly degraded after spore formation. On germination, Gas1p is actively synthesized and concentrated in the growing part of the spore, which is essential for its elongation. Thus Gas1p is the primary glucan-remodeling enzyme required in vegetative growth and during reentry into the proliferative state. The dynamic interplay among Gas proteins is crucial to couple glucan remodeling with morphogenesis in developmental transitions.  相似文献   

10.
Germination of dormant Bacillus subtilis spores with specific nutrient germinants is dependent on a number of inner membrane (IM) proteins, including (i) the GerA, GerB, and GerK germinant receptors (GRs) that respond to nutrient germinants; (ii) the GerD protein, essential for optimal GR function; and (iii) SpoVA proteins, essential for the release of the spore-specific molecule dipicolinic acid (DPA) during spore germination. Levels of GR A and C subunit proteins, GerD, and SpoVAD in wild-type spores were determined by Western blot analysis of spore fractions or total disrupted spores by comparison with known amounts of purified proteins. Surprisingly, after disruption of decoated B. subtilis spores with lysozyme and fractionation, ∼90% of IM fatty acids and GR subunits remained with the spores'' insoluble integument fraction, indicating that yields of purified IM are low. The total lysate from disrupted wild-type spores contained ∼2,500 total GRs/spore: GerAA and GerAC subunits each at ∼1,100 molecules/spore and GerBC and GerKA subunits each at ∼700 molecules/spore. Levels of the GerBA subunit determined previously were also predicted to be ∼700 molecules/spore. These results indicate that the A/C subunit stoichiometry in GRs is most likely 1:1, with GerA being the most abundant GR. GerD and SpoVAD levels were ∼3,500 and ∼6,500 molecules/spore, respectively. These values will be helpful in formulating mathematic models of spore germination kinetics as well as setting lower limits on the size of the GR-GerD complex in the spores'' IM, termed the germinosome.  相似文献   

11.
The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of approximately 9 and a temperature optimum of 60 degrees C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl(2). Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca(2+) almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca(2+) and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca(2+)-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca(2+)-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.  相似文献   

12.
Clostridium botulinum dormant spores germinate in presence of l-alanine via a specific receptor composed of GerAA, GerAB and GerAC proteins. In Bacillus subtilis spores, GerAA and GerAC proteins were located in the inner membrane of the spore. We studied the location of the GerAB protein in C. botulinum spore fractions by Western-blot analysis, using an antipeptidic antibody. The protein GerAB was in vitro translated and used to confirm the specificity of the antibodies. GerAB was not present in a coat and spore outer membrane fraction but was present in a fraction of decoated spores containing inner membrane. These results strongly suggest that the protein GerAB is located in the inner membrane of the spore.  相似文献   

13.
To confirm the presence of the outer spore membrane in dormant spore coats of Bacillus subtilis, the proteins from vegetative cell membrane and dormant spore coat fractions were compared by immunoblot assay with antibodies prepared against both preparations. The spore coat fraction contained at least 11 proteins antigenically identical to those in the vegetative cell membranes. Further, the cytochemical localization of the proteins derived from vegetative cell membrane in dormant spores was examined by an immunoelectron microscopy method with a colloidal gold-immunoglobulin G complex. The colloidal gold particles were observed in the coat region and around the core region of dormant spore. These results have provided evidence that some proteins from vegetative cell membrane remain in the dormant spore coat region of B. subtilis, although it is not clear whether the outer membrane persists as an intact functional entity or not.  相似文献   

14.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

15.
Bacillus subtilis spores that germinated poorly with saturating levels of nutrient germinants, termed superdormant spores, were separated from the great majority of dormant spore populations that germinated more rapidly. These purified superdormant spores (1.5 to 3% of spore populations) germinated extremely poorly with the germinants used to isolate them but better with germinants targeting germinant receptors not activated in superdormant spore isolation although not as well as the initial dormant spores. The level of β-galactosidase from a gerA-lacZ fusion in superdormant spores isolated by germination via the GerA germinant receptor was identical to that in the initial dormant spores. Levels of the germination proteins GerD and SpoVAD were also identical in dormant and superdormant spores. However, levels of subunits of a germinant receptor or germinant receptors activated in superdormant spore isolation were 6- to 10-fold lower than those in dormant spores, while levels of subunits of germinant receptors not activated in superdormant spore isolation were only ≤ 2-fold lower. These results indicate that (i) levels of β-galactosidase from lacZ fusions to operons encoding germinant receptors may not be an accurate reflection of actual germinant receptor levels in spores and (ii) a low level of a specific germinant receptor or germinant receptors is a major cause of spore superdormancy.  相似文献   

16.
Expression of the gene of glutamyl endopeptidase from Bacillus intermedius (gseBi) cloned on the plasmid pV has been studied in Bacillus subtilis recombinant strains with mutations of the regulatory proteins involved in sporogenesis and spore germination. It has been established that inactivation of the regulatory protein Spo0A involved in sporulation initiation resulted in a decrease in the expression of the gseBi gene by 65% on average. A mutation in the gene of the sensor histidine kinase kinA had no effect on the biosynthesis of the enzyme. Inactivation of Ger proteins regulating bacterial spore germination resulted in a 1.5–5-fold decrease in glutamyl endopeptidase activity. It has been concluded that expression of the B. intermedius glutamyl endopeptidase gene from plasmid pV in recombinant cells of B. subtilis is under impaired control by the regulatory system of Spo0F/Spo0A phosphorelay, which participates in sporulation initiation. The regulatory Ger proteins responsible for spore germination also affect expression of the gene of this enzyme.  相似文献   

17.
In plants, defensive proteins secreted to leaf aerial surfaces have not previously been considered to be a strategy of pathogen resistance, and the general occurrence of leaf surface proteins is not generally recognized. We found that leaf water washes (LWW) of the experimental plant Nicotiana tabacum tobacco introduction (TI) 1068 contained highly hydrophobic, basic proteins that inhibited spore germination and leaf infection by the oomycete pathogen Peronospora tabacina. We termed these surface-localized proteins tobacco phylloplanins, and we isolated the novel gene T-Phylloplanin (for Tobacco Phylloplanin) and its promoter from N. tabacum. Escherichia coli-expressed T-phylloplanin inhibited P. tabacina spore germination and greatly reduced leaf infection. The T-phylloplanin promoter, when fused to the reporter genes beta-glucuronidase and green fluorescent protein, directed biosynthesis only in apical-tip cell clusters of short, procumbent glandular trichomes. Here, we provide evidence for a protein-based surface defense system in the plant kingdom, wherein protein biosynthesis in short, procumbent glandular trichomes allows surface secretion and deposition of defensive phylloplanins on aerial surfaces as a first-point-of-contact deterrent to pathogen establishment. As yet uncharacterized surface proteins have been detected on most plant species examined.  相似文献   

18.
Y W Zhang  T Koyama    K Ogura 《Journal of bacteriology》1997,179(4):1417-1419
The two proteins (GerC1 and GerC3) encoded by the gerC locus of Bacillus subtilis, which has been shown to be involved in vegetative cell growth and spore germination, were identified as dissociable heterodimers of the heptaprenyl diphosphate synthase involved in the biosynthesis of the side chain of menaquinone-7.  相似文献   

19.
Germination of Bacillus subtilis spores is normally initiated when nutrients from the environment interact with germinant receptors (GRs) in the spores'' inner membrane (IM), in which most of the lipids are immobile. GRs and another germination protein, GerD, colocalize in the IM of dormant spores in a small focus termed the “germinosome,” and this colocalization or focus formation is dependent upon GerD, which is also essential for rapid GR-dependent spore germination. To determine the fate of the germinosome and germination proteins during spore germination and outgrowth, we employed differential interference microscopy and epifluorescence microscopy to track germinating spores with fluorescent fusions to germination proteins and used Western blot analyses to measure germination protein levels. We found that after initiation of spore germination, the germinosome foci ultimately changed into larger disperse patterns, with ≥75% of spore populations displaying this pattern in spores germinated for 1 h, although >80% of spores germinated for 30 min retained the germinosome foci. Western blot analysis revealed that levels of GR proteins and the SpoVA proteins essential for dipicolinic acid release changed minimally during this period, although GerD levels decreased ∼50% within 15 min in germinated spores. Since the dispersion of the germinosome during germination was slower than the decrease in GerD levels, either germinosome stability is not compromised by ∼2-fold decreases in GerD levels or other factors, such as restoration of rapid IM lipid mobility, are also significant in germinosome dispersion as spore germination proceeds.  相似文献   

20.
Previous work has shown that the degradation of 20% of total protein which occurs early in germination of Bacillus megaterium spores is initiated by an endoprotease. This enzyme is found only in the spore and is active only on the spore proteins degraded during germination. Action of the spore protease in vitro on the three major proteins (Proteins A, B, and C) which are degraded in vivo during germination results in cleavage of one (A and C protein) or two (B protein) peptide bonds. The sequences surrounding the cleavage sites are -Tyr-Glu- Ile-Ala-Ser-Glu-Phe- in the A protein, -Phe-Glu- Ile-Ala-Ser-Glu-Phe- in the C protein, and -Thr-Glu- Phe-Gly-Ser-Glu-Thr-, and -Thr-Glu- Phe-Ala-Ser-Glu-Thr- in the B protein, with cleavage taking place at the glutamyl bond noted by the arrow. The similarity of these four sequences suggests the possibility that the specificity of the spore protease may be due to its requirement for a specific pentapeptide sequence of the type -R-Glu-(Phe or Ile)-(Gly or Ala)-Ser-Glu-R- for recognition and cleavage. However, it is also possible that it is the conformation of the A, B, and C proteins which determines their site of cleavage by the spore protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号