首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toxoplasma gondii is a medically important, obligate intracellular parasite. Little is known regarding factors that regulate its replication within cells. Such knowledge would further understanding of T. gondii pathogenesis, and might lead to novel therapeutic strategies. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes including proliferation and differentiation. We now show that treatment of T. gondii-infected cells with SB203580 or SB202190, substituted pyridinylimidazoles that are potent inhibitors of human p38 MAPK, inhibits intracellular T. gondii replication. Several independent experimental approaches suggest that the anti-proliferative effects of pyridinylimidazoles depend on direct action on tachyzoites, not the host cell: (i) selective inhibition of host p38 MAPK using recombinant adenoviruses had little effect on tachyzoite replication, (ii) pyridinylimidazole-treated tachyzoites developed abnormal morphology suggesting defective parasite division, and (iii) pyridinylimidazole-resistant mutant tachyzoites were developed through culture in progressively higher drug concentrations. We hypothesise that pyridinylimidazoles target a human p38 MAPK homologue in tachyzoites that regulates their replication. Phylogenetic data suggest that T. gondii likely encodes a p38 MAPK homologue, but such a homologue is absent from the incomplete Toxoplasma genomic data base. As all eukaryotic pathogens, including agents of malaria, leishmaniasis and trypanosomiasis encode endogenous MAPKs, drugs inhibiting endogenous MAPK activation may represent a novel, potentially broadly-acting class of anti-parasitic agents. Pyridinylimidazoles also represent tools to elucidate factors governing intracellular tachyzoite replication.  相似文献   

2.
Host cell invasion is essential for the pathogenicity of the obligate intracellular protozoan parasite Toxoplasma gondii. In the present study, we evaluated the ability of T. gondii tachyzoites to trigger phosphorylation of the different mitogen-activated protein kinases (MAPK) in human monocytic cells THP1. Kinetic experiments show that the peak of extracellular-signal-regulated kinase (ERK1/2), P38 and cjun-NH2 terminal kinase (JNKs) phosphorylation occurs between 10 and 60 min. The use of specific inhibitors of ERK1/2, P38 and JNK1/2 phosphorylation indicates the specificity of MAPKs phosphorylation during invasion. Signaling through cellular and parasite mitogen-activated protein (MAP) kinase pathways appears to be critical for T. gondii invasion.  相似文献   

3.
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadinm salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.Abbreviations eIF-4 eukaryotic protein synthesis initiation factor-4 - GRB-2 growth factor receptor bound protein-2 - GSK-3 Glycogen Synthase Kinase-3 - IRS-1 insulin receptor substrate-1 - ISPK insulin stimulated protein kinase - MAPK mitogen activated protein kinase, also known as - ERK extracellular signal regulated kinase - MAPKK mitogen activated protein kinase kinase, also known as-MEK, MAPK or ERK kinase - PHAS-1 phosphorylated heat and acid stable protein regulated by insulin - PI3K phosphatidyl inositol 3-kinase - PP1-G protein phosphatase-glycogen bound form - PTK protein tyrosine kinase - PTPase protein tyrosine phosphatase - rsk ribosomal s6 kinases - shc src homology domain containing protein - SOS son of sevenless  相似文献   

4.
The ability of Toxoplasma gondii to cycle between the tachyzoite and bradyzoite life stages in intermediate hosts is key to parasite survival and the pathogenesis of toxoplasmosis. Studies from a number of laboratories indicate that differentiation in T. gondii is a stress-induced phenomenon. The signalling pathways or molecular mechanisms that control formation of the latent bradyzoite stage are unknown and specific effectors of differentiation have not been identified. We engineered a reporter parasite to facilitate simultaneous comparison of differentiation and replication after various treatments. Chloramphenicol acetyltransferase (CAT), expressed constitutively from the alpha-tubulin promoter (TUB1), was used to quantitate parasite number. beta-galactosidase (beta-GAL), expressed from a bradyzoite specific promoter (BAG1), was used as a measure of bradyzoite gene expression. Sodium nitroprusside, a well-known inducer of bradyzoite differentiation, reduced reporter parasite replication and caused bradyzoite differentiation. Stress-induced differentiation in many other pathogens is regulated by cyclic nucleotide kinases. Specific inhibitors of the cAMP dependent protein kinase and apicomplexan cGMP dependent protein kinase inhibited replication and induced differentiation. The beta-GAL/CAT reporter parasite provides a method to quantify and compare agents that cause differentiation in T. gondii.  相似文献   

5.
Mitogen-activated protein (MAP) kinases are a family of serine/threonine protein kinases that play an important role in a myriad of cellular processes, including cell proliferation, differentiation, and apoptosis. Abnormal activation of MAP kinases has been shown to participate in a variety of human diseases which include cancer, septic shock, rheumatoid arthritis, diabetes, and cardiovascular diseases. Active MAP kinase enzymes are not only valuable for basic biomedical research but are also critical for the development of pharmacological inhibitors as therapeutic drugs in the treatment of relevant human diseases. MAP kinases produced in a bacterial system are poorly active due to a lack of proper phosphorylation at their characteristic threonine and tyrosine residues. To overcome these limitations, we have developed a mammalian expression system for high level expression and one-step purification of enzymatically MAP kinases. We cloned JNK1, p38, and p38-regulated MAP kinase-activated protein kinase-2 into the mammalian expression vector pEBG, and expressed these protein kinases as glutathione S-transferase fusion proteins in human embryonic kidney 293T cells through transient transfection. The protein kinases were activated in vivo through treating the transfected cells with sodium arsenite and affinity-purified using glutathione-Sepharose beads. The enzymatic activities of these protein kinases were demonstrated by Western blot analysis and in vitro kinase assays. Our results indicate that this system is an extremely powerful tool for generating valuable reagents, and could be very valuable for proteomic studies.  相似文献   

6.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

7.
Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP) kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with MAP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, RO31-8220 and PD098059, reduced tachyzoite infectivity by 38 +/- 4.5%, 85.5 +/- 9% and 56 +/- 10%, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 +/- 37% and 258 +/- 14%, respectively). These results suggest that signalling pathways involving PKC and MAP kinases play a role in host cell invasion by Toxoplasma.  相似文献   

8.
To examine signal transduction events activated by oncogenic p21ras, we have studied kinases that are activated following the scrape loading of p21ras into quiescent cells. We observe rapid activation of 42 kDa and 46 kDa protein kinases. The 42 kDa kinase is the mitogen and extracellular-signal regulated kinase ERK2, (MAP2 kinase), which is activated by phosphorylation on tyrosine and threonine in response to oncogenic p21ras, while the 46 kDa kinase is likely to be another member of the ERK family. Stimulation of these kinases by oncogenic p21ras does not require the presence of growth factors, showing that oncogenic p21ras uncouples kinase activation from external signals. In ras transformed cell lines, these kinases are constitutively activated. We propose that the kinases are important components of the signal transduction pathway activated by p21ras oncoprotein.  相似文献   

9.
促分裂原活化蛋白激酶磷酸酶   总被引:4,自引:0,他引:4  
促分裂原活化蛋白激酶磷酸酶(mitogen-activated protein kinase phosphatases,MKPs)是一类丝/苏氨酸和酪氨酸双特异性的磷酸酶。它在细胞分化、增殖和基因表达过程中起着重要的作用。MKPs可以选择性地结合促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK),对MAPK进行去磷酸化,从而调节MAPK信号通路的活性。另一方面,MAPK也可以激活MKPs,它们的相互作用确保了细胞内信号的精确传递,并参与细胞功能的调节。  相似文献   

10.
The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38‐alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.49 Å resolution. Uniquely, the protein was crystallized as an MBP fusion protein in complex with a monobody that binds to MBP. Sulfate ions occupy the phosphotyrosine and putative phosphothreonine binding sites in the DUSP1 catalytic domain.  相似文献   

11.
12.
H Kosako  E Nishida    Y Gotoh 《The EMBO journal》1993,12(2):787-794
A Xenopus 45 kDa protein has been identified as an immediate upstream factor sufficient for full activation of MAP kinase, and is shown to be capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. In this study, we show that purified 45 kDa protein can phosphorylate a kinase-negative mutant of Xenopus MAP kinase on tyrosine and threonine residues, suggesting that the 45 kDa protein functions as a MAP kinase kinase to activate MAP kinase. We then report the cloning and sequencing of a full-length cDNA encoding this 45 kDa MAP kinase kinase, and show that it is highly homologous to four protein kinases in fission and budding yeasts: byr1, wis1, PBS2 and STE7. These yeast kinases are therefore suggested to function as a direct upstream activator for a presumed MAP kinase homolog in each signal transduction pathway involved in the regulation of cell cycle progression or cellular responses to extracellular signals. Finally, we report bacterial expression of recombinant MAP kinase kinase that can be phosphorylated and activated by Xenopus egg extracts.  相似文献   

13.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

14.
Mitogen-activated protein kinases are key-regulatory elements in the differentiation, proliferation, apoptosis and stress response of eukaryotic cells. Our recent identification of a mitogen-activated protein kinase homologue in Leishmania mexicana which is essential for the proliferation of the amastigote stage of the parasite living in the parasitophorous vacuole of the infected macrophage prompted us to screen the genome of L. mexicana for additional mitogen-activated protein kinase homologues using degenerate oligonucleotide primers in a polymerase chain reaction amplification approach. We cloned and sequenced the genes for eight new mitogen-activated protein kinase homologues which were subsequently shown to be present in one copy per haploid genome. The mRNA levels of the kinases varied significantly in pro- and amastigote life stages of the parasite. We used the structural information of the p38 stress-activated protein kinase, which belongs to the family of mitogen-activated protein kinases, for the alignment of the deduced proteins and the verification of the predicted secondary structure elements. All new mitogen-activated protein kinases reveal the typical 12 subdomain primary structure, the conserved residues characterising serine/threonine protein kinases and the characteristic TXY motif in the phosphorylation lip. Typical features of some of the molecules are amino acid insertions between the subdomains and long carboxy-terminal amino acid extensions carrying putative src-homology 3-binding motifs.  相似文献   

15.
16.
A novel protein kinase, the Esk kinase, has been isolated from an embryonal carcinoma (EC) cell line by using an expression cloning strategy. Sequence analysis of two independent cDNA clones (2.97 and 2.85 kb) suggested the presence of two Esk isoforms in EC cells. The esk-1 cDNA sequence predicted an 857-amino-acid protein kinase with a putative membrane-spanning domain, while the esk-2 cDNA predicted an 831-amino-acid kinase which lacked this domain. In adult mouse cells, esk mRNA levels were highest in tissues possessing a high proliferation rate or a sizeable stem cell compartment, suggesting that the Esk kinase may play some role in the control of cell proliferation or differentiation. As anticipated from the screening procedure, bacterial expression of the Esk kinase reacted with antiphosphotyrosine antibodies on immunoblots. Furthermore, in in vitro kinase assays, the Esk kinase was shown to phosphorylate both itself and the exogenous substrate myelin basic protein on serine, threonine, and tyrosine residues, confirming that the Esk kinase is a novel member of the serine/threonine/tyrosine family of protein kinases.  相似文献   

17.
A gene encoding a novel MAP kinase family member, Spm1, was isolated from the fission yeast Schizosaccharomyces pombe. Overproduction of Spm1 inhibits proliferation. Disruption of the spm1+ gene interferes with cell separation and morphogenesis. Under conditions of nutrient limitation, hypertonic stress or elevated temperature, spm1 delta cells grow as short branched filaments in which the cell walls and septa are thickened, suggesting defects in polarized growth and cell wall remodeling. At high osmolarity, spm1 delta cells fail to form colonies. The Spm1 protein is tyrosine phosphorylated and activated in response to osmotic and heat stress, consistent with a role for Spm1 in adaptation to these conditions. Two other S.pombe MAP kinases are known, Spk1, required for sexual differentiation and sporulation, and Spc1/Sty1/Phh1, which is activated in hypertonic conditions. However, the distinctive features of the spm1 delta mutant phenotype and direct biochemical assays suggest that Spm1 does not lie on other known MAP kinase pathways. Our results demonstrate the existence of a new MAP kinase pathway that regulates cell wall remodeling and cytokinesis in response to environmental stresses.  相似文献   

18.
The role of calcium-dependent protein kinases in the invasion of Toxoplasma gondii into its animal host cells was analyzed. KT5926, an inhibitor of calcium-dependent protein kinases in other systems, is known to block the motility of Toxoplasma tachyzoites and their attachment to host cells. In vivo, KT5926 blocks the phosphorylation of only three parasite proteins, and in parasite extracts only a single KT5926-sensitive protein kinase activity was detected. This activity was calcium-dependent but did not require calmodulin. In a search for calcium-dependent protein kinases in Toxoplasma, two members of the class of calmodulin-like domain protein kinases (CDPKs) were detected. TgCDPK2 was only expressed at the mRNA level in tachyzoites, but no protein was detected. TgCDPK1 protein was expressed in Toxoplasma tachyzoites and cofractionated precisely with the peak of KT5926-sensitive protein kinase activity. TgCDPK1 kinase activity was calcium-dependent but did not require calmodulin or phospholipids. TgCDPK1 was found to be inhibited effectively by KT5926 at concentrations that block parasite attachment to host cells. In vitro, TgCDPK1 phosphorylated three parasite proteins that migrated identical to the three KT5926-sensitive phosphoproteins detected in vivo. Based on these observations, a central role is suggested for TgCDPK1 in regulating Toxoplasma motility and host cell invasion.  相似文献   

19.
20.
A mitogen-activated protein (MAP) kinase gene, PfMAP, from Plasmodium falciparum was recently identified. We expressed this gene in Escherichia coli to test whether it encodes a functional MAP kinase. Recombinant PfMAP kinase autophosphorylates on both the tyrosine and threonine residues within the TXY motif, and readily phosphorylates myelin basic protein as exogenous substrate. This identifies the PfMAP gene product as a true member of the growing family of MAP kinases. Wild-type PfMAP kinase expressed in COS-7 (SV40 transformed African green monkey kidney) cells seemed to induce apoptosis in these cells. Western blots and immunoprecipitations indicated that the kinase is expressed during the growth of the parasite in the red blood cell as three major forms: truncated forms with apparent molecular masses of 40 kDa and 80 kDa, and as a protein of ≈150 kDa. The 40 kDa form is present throughout the intraerythrocytic development, whereas the two larger forms are only detected in mature parasites. The 40 kDa and 80 kDa forms are tyrosine phosphorylated, indicating that they represent the active forms of the PfMAP kinase. The total PfMAP kinase activity constantly increases with the maturation of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号