首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior papers have dealt with the range of the growth responsesof carrot explants to the composition of the ambient media andhow these affected the solute concentration and compositionof the tissue. They have also dealt with the sequential eventsalong the time course of growth of the tissue explant. Thispaper presents results and conclusions derived from experimentswhich exploit changes in the growing explants when their normalcourse of growth and solute uptake is interrupted by exposingthem sequentially to different ambient media. After explants were induced to grow during an initial 6 days,they were placed in a minimal nutrient medium which lacked growthstimuli and salts, notably potassium ions. Thus the internalsalt concentrations of the cells declined as they continuedto divide and enlarge at a reduced rate and their osmotic valuewas maintained by storage of organic solutes (sugar). The subsequentresponses of these ‘low salt’ cells to differentnutrient regimes were studied. When salts were resupplied, growth was stimulated somewhat andthe osmotic value of the cells increased as salts were accumulated;with a renewed full nutrient medium and a full complement ofgrowth substances, the cultures re-embark upon their growthand attain the average cell size and composition as if theyhad not been reversibly arrested. Thus reversible trends insolute composition of cells may be superimposed upon their normaldevelopmental course by alternately withholding and restoringthe stimuli to their growth and by changing the balance betweenorganic and inorganic solutes supplied in the medium. The emphasis is on the control of osmotic value in the cellsas they enlarge and mature and this over-rides the changes inthe solutes they receive (salts or sugars) via the ambient medium.The effects here observed were induced by sequential changesin the culture medium, but these obviously relate to similarresponses of cells in the intact plant body as their growthand solute supply is modified through interactions between organsas the plant grows.  相似文献   

2.
The need to re-evaluate concepts of salt and solute accumulationin the light of evidence derived from cells at all stages oftheir growth and development is recognized. The problem is seenin terms of the nutrition of flowering plants, the growing cellsof which are essentially heterotrophic, and the solutes of whichare progressively acquired and redistributed during ontogeny.This is traced from the zygote in the embryo sac to an establishedplant body with its evident ‘source-sink’ relationshipsand physiological ‘division of labour’ between organs.The evidence accrued from aseptic cultures which were manipulatedto reveal the range of solutes in cells which simulated thenormal course of development in situ as they multiplied, vacuolated,enlarged, and eventually matured. The regulatory control exercisedby cells in these developmental stages over the total osmoticvalue and the relative composition of their solutes (organicand inorganic) is both described and interpreted. The reversiblechanges that may occur (within a regulated osmotic value) inthe solutes of established cells as they replace sugars by saltsof organic acids, by organic nitrogen compounds, or by alkalihalides are both described and related to events that occurin the developed plant body. Particular significance is attachedto the consequences of the normal need of land plants to acquirenitrogen from nitrate and of the intervention of reduced nitrogenunder circumstances in which the need for non-metabolizableions (e.g. alkali halides) is, thereby, drastically curtailed.Cells in multiplication require energy to create new structureand do not emphasize the accumulation of solutes in bulk; however,when they enlarge, energy is obligated to the storage of solutes(organic and inorganic) to support their cytoplasm which isbeing ‘spread out thin’. These events involve morethan the properties of membranes, or their relations to individualions or molecules, for they require an understanding of cellsas compartmented, metabolic, and osmotic machines, and of theirvariously obligated energy relationships. Moreover, the subjectnow needs to be seen as an aspect of the over-all nutritionof cells, organs, and organisms as they grow and develop.  相似文献   

3.
Solute transport through the extracellular matrix is essential for cellular activities in articular cartilage. Increased solute transport via fluid convection may be a mechanism by which dynamic compression stimulates chondrocyte metabolism. However, loading conditions that optimally augment transport likely vary for different solutes. To investigate effects of dynamic loading on transport of a bioactive solute, triangular mechanical loading waveforms were applied to cartilage explants disks while interstitial transport of a fluorescent glucose analog was monitored. Peak-to-peak compression amplitudes varied from 5-50% and frequencies varied from 0.0006-0.1 Hz to alter the spatial distribution and magnitude of oscillatory fluid flow. Solute transport was quantified by monitoring accumulation of fluorescence in a saline bath circulated around the explant. Individual explants were subjected to a series of compression protocols, so that effects of loading on solute desorption could be observed directly. Maximum increases in solute transport were obtained with 10-20% compression amplitudes at 0.1 Hz; similar loading protocols were previously found to stimulate chondrocyte metabolism in vitro. Results therefore support hypotheses relating to increased solute transport as a mediator of the cartilage biological response to dynamic compression, and may have application in mechanical conditioning of cartilage constructs for tissue engineering.  相似文献   

4.
Summary Earlier papers of this series relate to different growth-promoting substances and systems which, singly and in combination, have interacted with trace elements (Mn and Mo) and Fe to induce growth and to affect the metabolism of aseptic cultures of carrot. The solutes of cultured carrot cells (K+, Na+, Cl, total solutes) are also affected. Two clones were grown in 9 combinations of growth factors and under 4 trace-element regimes (a complete complement including Fe, and this complement lacking either Mn or Mo, or both Mn and Mo), a total of 36 treatments under otherwise standardized experimental conditions. Under the treatments applied the number of cells varied over a 35fold range and their average size over a 7fold range; the concomitant effects on their solutes are expressed in terms of concentrations and of total content per cell. Both growth and the solutes accumulated were variously affected by carrot growth-promoting system I (mediated by inositol), by system II (mediated by IAA), and by coconut milk in the presence of Fe, with and without Mn, Mo, or Mn and Mo.The greatest concentrations of total solutes occurred in tissue cultured in nutrient solutions which lacked the stimuli to rapid cell multiplication and were also limited by the trace elements Mn and Mo. Moreover, specific regulatory effects of the trace elements on solute content, not solely attributable to their effects on cell growth, have been noted. An imbalanced growth-factor regime (zeatin acting alone, i.e. without IAA) shifted the normal preference for K+ over Na+ strongly toward Na+, a trend which could also be induced by certain trace elements and more balanced growth-factor regimes, e.g. in a basal coconut milk medium lacking only Mn.The data are interpreted in the context of views on the de-novo uptake of salts and solutes in cultured cells as they grow. These cells respond to a network, or matrix, of interacting factors by distinctive effects that are attributable to the component parts of the culture medium acting singly and in various combinations. These interactions (involving trace elements and exogenous growth factors) control growth (fresh weight, number and size of cells) and regulate the solutes (organic and inorganic; K+ vs. Na+; organic anions vs. Cl) which the cells acquire as they grow and develop. The intensity of the response of the cultures to balanced, or imbalanced, growth factors creates the internal spaces accessible to solutes; and the metabolism, as it is also affected by growth factors and trace elements, determines how these spaces are to be filled at a given osmotic value. The evidence shows the range of factors that affect the accumulation of solutes in cells as they grow and is to be contrasted with conventional observations on mature cells held in steady states under conditions that preclude all growth and when only a single ionic species is followed over a very short interval of time.  相似文献   

5.
Procedures previously described were used to study growth andsolute content of aseptically cultured carrot explants as affectedby supplementary salts in the medium. The salts chosen (KC1,KNO3, NH4,Cl, and NH4,NO3) contrasted, with appropriate controls,the effects due to nitrate and ammonium. Growth was measuredin terms of fresh weight, the number and average size of cells:solute concentrations were recorded for total solutes, sugars,soluble nitrogen compounds, and the electrolytes K+, Na+, C1,NO3, and organic acids. The time-response curves of thecultures were traced at a fixed concentration of the added saltsand the effects due to the concentration of the supplementarysalts were tested after a fixed time period, For the same nitrogensource the concentrations of metabolites and solutes in cellswere very similar despite some clonal differences in their growth.When cells in a nitrate medium were small and dividing, thecultures had a low osmotic value, contained K+ as the principalcation balanced by organic acid, had relatively low sugar content,and their enriched total nitrogen content emphasized proteinrather than soluble nitrogen compounds. Later, as the cellsbecame older and larger, salts (K+, organic anions, Cl)contributed substantially to their increased osmotic value butthey accumulated sugar as their main, osmotically active solute,and the ratio of soluble to protein nitrogen declined as proteinsynthesis progressed. The extra nitrogen supplied by the additionalpotassium nitrate contributed more to protein and caused potassium,organic acids, and sugars to accumulate to higher levela. Supplementaryammonium salts required that more sugar be metabolized to organicnitrogen compounds (e.g. glutamine), contributed more to solublethan to protein nitrogen, and sharply reduced. both the osmoticvalue of the cells and the potassium linked to organic anions.The selectivity of the growing cells for K+ over Na+ and theirdiscrimination. between alkali cations (Ka++Na+) and halides(C1) were relaxed in the presence of ammonia. Attentionis drawn to the implications of these results for the accumulationof solutes, organic and inorganic, by dividing and enlargingcells.  相似文献   

6.
The osmoadaptation of most micro-organisms involves the accumulation of K(+) ions and one or more of a restricted range of low molecular mass organic solutes, collectively termed 'compatible solutes'. These solutes are accumulated to high intracellular concentrations, in order to balance the osmotic pressure of the growth medium and maintain cell turgor pressure, which provides the driving force for cell extension growth. In this review, I discuss the alternative roles which compatible solutes may also play as intracellular reserves of carbon, energy and nitrogen, and as more general stress metabolites involved in protection of cells against other environmental stresses including heat, desiccation and freezing. Thus, the evolutionary selection for the accumulation of a specific compatible solute may not depend solely upon its function during osmoadaptation, but also upon the secondary benefits its accumulation provides, such as increased tolerance of other environmental stresses prevalent in the organism's niche or even anti-herbivory or dispersal functions in the case of dimethylsulfoniopropionate (DMSP). In the second part of the review, I discuss the ecological consequences of the release of compatible solutes to the environment, where they can provide sources of compatible solutes, carbon, nitrogen and energy for other members of the micro-flora. Finally, at the global scale the metabolism of specific compatible solutes (betaines and DMSP) in brackish water, marine and hypersaline environments may influence global climate, due to the production of the trace gases, methane and dimethylsulfide (DMS) and in the case of DMS, also couple the marine and terrestrial sulfur cycles.  相似文献   

7.
The biomechanical functions of articular cartilage are governed largely by the composition and density of its specialized extracellular matrix. Relationships between matrix density and functional indices such as mechanical properties or interstitial solute diffusivities have been previously explored. However, direct correlations between mechanical properties and solute transport parameters have received less attention, despite potential application of this information for cartilage functional assessment both in vivo and in vitro. The objective of this study was therefore to examine relationships among solute diffusivities, mechanical properties, and matrix density of compressed articular cartilage. Matrix density varied due to natural variation among explants and due to applied static compression. Matrix density of statically compressed cartilage explants was characterized by glycoaminoglycan (GAG) weight fraction and fluid volume fraction, while diffusion coefficients of a wide range of solutes were measured to characterize the transport environment. Explant mechanical properties were characterized by a non-linear Young's modulus (axial stress-strain ratio) and a non-linear Poisson's ratio (radial-to-axial strain ratio). Solute diffusivities were consistently correlated with Young's modulus, as well as with explant GAG weight and fluid volume fractions. Therefore, in vitro mechanical tests may provide a means of assessing transport environments in cartilage-like materials, while in vivo measurements of solute transport (for example with magnetic resonance imaging) may be a useful complement in identifying localized differences in matrix density and mechanical properties.  相似文献   

8.
Organic Solutes in Hyperthermophilic Archaea   总被引:8,自引:2,他引:6       下载免费PDF全文
We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate and (beta)-mannosylglycerate, Methanothermus fervidus accumulated cyclic-2,3-bisphosphoglycerate and (beta)-mannosylglycerate, while the only solute detected in Pyrodictium occultum was di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate. Methanopyrus kandleri accumulated large concentrations of cyclic-2,3-bisphosphoglycerate. On the other hand, Archaeoglobus fulgidus accumulated three phosphorylated solutes; prominent among them was a compound identified as di-glycerol-phosphate. This solute increased in concentration as the salinity of the medium and the growth temperature were raised, suggesting that this compound serves as a general stress solute. Di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate accumulated at supraoptimal temperature only. The relationship between the accumulation of unusual solutes and high temperatures is also discussed.  相似文献   

9.
Compatible solute biosynthesis in cyanobacteria   总被引:1,自引:0,他引:1  
Compatible solutes are a functional group of small, highly soluble organic molecules that demonstrate compatibility in high amounts with cellular metabolism. The accumulation of compatible solutes is often observed during the acclimation of organisms to adverse environmental conditions, particularly to salt and drought stress. Among cyanobacteria, sucrose, trehalose, glucosylglycerol and glycine betaine are used as major compatible solutes. Interestingly, a close correlation has been discovered between the final salt tolerance limit and the primary compatible solute in these organisms. In addition to the dominant compatible solutes, many strains accumulate mixtures of these compounds, including minor compounds such as glucosylglycerate or proline as secondary or tertiary solutes. In particular, the accumulation of sucrose and trehalose results in an increase in tolerance to general stresses such as desiccation and high temperatures. During recent years, the biochemical and molecular basis of compatible solute accumulation has been characterized using cyanobacterial model strains that comprise different salt tolerance groups. Based on these data, the distribution of genes involved in compatible solute synthesis among sequenced cyanobacterial genomes is reviewed, and thereby, the major compatible solutes and potential salt tolerance of these strains can be predicted. Knowledge regarding cyanobacterial salt tolerance is not only useful to characterize strain-specific adaptations to ecological niches, but it can also be used to generate cells with increased tolerance to adverse environmental conditions for biotechnological purposes.  相似文献   

10.
Summary Dissociated prospective ectoderm cells from Xenopus laevis embryos divide autonomously up to the 17th division cycle of the embryo. To examine the requirements for the further proliferation of these cells, the continuation of cell division in compact ectodermal explants beyond the 17th division cycle has been studied. Such explants develop into aggregates of epidermal cells, as can be shown immunohistochemically with an anti-serum against Xenopus epidermal cytokeratin. Cell division in these explants is comparable to the in vivo proliferation rate at least during the first 24 h of cultivation, that is, well beyond the 17th division cycle. Thus, epidermal cells are provided with all the factors necessary for continued proliferation, but these can be effective only when the cells form tight aggregates. The long-term changes in cell number are complex. Mitotic figures are present until the explants disintegrate after 3–4 days. However, the total cell number per explant does not increase during later development. The production of cells by mitotic divisions is likely to be countered by the loss of cells due to cell death, which is indicated by the presence of pyknotic nuclei.  相似文献   

11.
This paper presents the concepts, the analytical methods, andthe experimental devices used in a reappraisal of the problemsof solute and water uptake which utilizes both quiescent andactively growing cells. The tissue used is drawn from the secondaryphloem of the carrot root and, in all experiments, it is underconditions of aseptic culture which permit both inorganic andorganic solutes to be studied for relatively long periods. The range of responses of the explanted carrot tissue has beenobserved in different media. These include simple inorganicsalt solutions (CaCl2, KC1, NaCl, etc.), a full organic andinorganic nutrient medium and also the latter supplemented bystimuli that unleash the full ability of the otherwise restingcells to grow. The effects on both growth and composition of the cells havebeen observed with time. The high osmotic value of the maturenon-growing cells may be made up, non-specifically, by salts(KC1, NaCl) or organic solutes (sugars) which are accumulated;when growth is not primarily involved these solutes may thenbehave reciprocally in accordance with supply, in the media,and demand, in the cells. Rapidly dividing cells, on the other hand, creating vacuoles,have lower osmotic value, greater specificity for potassium,and the solutes they store are under more endogenous than exogenouscontrol. Between these extremes the solutes which are accumulated dependupon the levels of growth induced which in turn are responsesto the nutrients and stimuli furnished. These observations and their interpretation set a trend forthe papers that are to follow.  相似文献   

12.
Chondrocytes depend upon solute transport within the avascular extracellular matrix of articular cartilage for many of their biological activities. Alterations to solute transport parameters may therefore mediate the cell response to tissue compression. While interstitial solute transport may be supplemented by convection during dynamic tissue compression, matrix compression is also associated with decreased diffusivities. Such trade-offs between increased convection and decreased diffusivities of solutes in dynamically compressed cartilage remain largely unexplored. We measured diffusion and convection coefficients of a wide range of solutes in mature bovine cartilage explant disks subjected to radially unconfined axial ramp compression and release. Solutes included approximately 500 Da fluorophores bearing positive and negative charges, and 10 kDa dextrans bearing positive, neutral, and negative charges. Significantly positive values of convection coefficients were measured for several different solutes. Findings therefore support a role for solute convection in mediating the cartilage biological response to dynamic compression.  相似文献   

13.
Transport of lactose and methyl beta-D-thiogalactopyranoside, a melibiose analogue, was studied in intact cells of Escherichia coli. A proton motive force could drive the translocation of these solutes via these two transport systems, but the initial rates and steady-state levels of solute accumulation increased upon initiation of electron transfer. When the absolute value of the proton motive force was decreased by ionophores the steady-state levels of lactose accumulation did not decrease as expected if thermodynamic equilibrium with the proton motive force had existed. Accumulation of lactose was also observed in the absence of any measurable proton motive force as long as electron transfer took place. Since both proton/lactose and sodium/methyl beta-D-thiogalactopyranoside symport showed the same characteristics, an explanation based on local proton diffusion pathways is unlikely.  相似文献   

14.
Using nuclear magnetic resonance spectroscopy, we identified and characterized accumulated compatible solutes in cells of the haptophyte alga Pavlova sp. strain CCMP504. The predominant organic solutes were d ‐1,4/2,5‐cyclohexanetetrol (CHT), 1,3,5/2,4‐cyclohexanepentol (CHP) and scyllo‐inositol. We then profiled the intracellular organic solutes present in Pavlova sp. grown in medium with salinity ranging from 23 practical salinity units (PSU) (hyposaline) to 35 PSU (optimum salinity for growth), to 47 PSU (hypersaline). The results of these analyses reveal progressive accumulation of CHT and CHP in response to increasing growth medium salinity. We also observed altered accumulation of CHT and CHP in samples subjected to salinity shock. To further characterize the CHT and CHP biosynthesis in Pavlova sp., we carried out stable isotope feeding experiments. Specific labeling of CHT and CHP with d ‐13C‐glucose suggested that d ‐glucose is a biosynthetic precursor of these cyclitols. The salinity‐induced accumulation of CHT and CHP suggests that these cyclitols act as compatible solutes. Our results therefore provide new evidence supporting classification of CHP as a compatible solute.  相似文献   

15.
Drug-induced gingival enlargement (DIGE) is a fibrotic condition that can be caused by the antihypertensive drug nifedipine and the anti-seizure drug phenytoin, but the molecular etiology of this type of fibrosis is not well understood and the role of confounding factors such as inflammation remains to be fully investigated. The aim of this study was to develop an ex vivo gingival explant system to allow investigation of the effects of nifedipine and phenytoin alone on human gingival tissue. Comparisons were made to the histology of human DIGE tissue retrieved from individuals with DIGE. Increased collagen, fibronectin, and proliferating fibroblasts were evident, but myofibroblasts were not detected in DIGE samples caused by nifedipine and phenytoin. In healthy gingiva cultured in nifedipine or phenytoin-containing media, the number of cells positive for p-SMAD2/3 increased, concomitant with increased CCN2 and periostin immunoreactivity compared to untreated explants. Collagen content assessed through hydroxyproline assays was significantly higher in tissues cultured with either drug compared to control tissues, which was confirmed histologically. Matrix fibronectin levels were also qualitatively greater in tissues treated with either drug. No significant differences in proliferating cells were observed between any of the conditions. Our study demonstrates that nifedipine and phenytoin activate canonical transforming growth factor-beta signaling, CCN2 and periostin expression, as well as increase collagen density, but do not influence cell proliferation or induce myofibroblast differentiation. We conclude that in the absence of confounding variables, nifedipine and phenytoin alter matrix homeostasis in gingival tissue explants ex vivo, and drug administration is a significant factor influencing ECM accumulation in gingival enlargement.  相似文献   

16.
To cope with the water deficit resulting from saline environment, plant cells accumulate three kinds of osmotica: salts, small organic solutes and hydrophillic, glycine-rich proteins. Salts such as NaCl are cheap and available but has ion toxicity in high concentrations. Small organic solutes are assistant osmotica, their main function is to protect cytoplasmic enzymes from ionic toxicity and maintain the integrity of cellular membranes. Hydrophillic, glycine-rich proteins are the most effective osmotica, they have some characteristics to avoid crystallization even in high concentration, but because they are expensive they are not as commonly used as salts or organic solutes. In addition there is the question of whether the genetic information for growth in saline environment is present in all kinds of plants, both halophytes and nonhalophytes.  相似文献   

17.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

18.
Abstract The effect of osmotic stress, given as decreased water activity (aw), on growth and the accumulation of potassium and the compatible solute betaine by Pseudomonas putida S12 was investigated. Reduced aw was imposed by addition of sodium chloride, sucrose, glycerol or polyethylene glycol to the growth medium. Accumulation of potassium and betaine was established when sodium chloride and sucrose were used to cause osmotic stress. No accumulation of these solutes was found in the presence of glycerol. Addition of polyethylene glycol to the medium strongly decreased the growth rate in comparison with the other osmolytes tested at the corresponding aw. Although polyethylene glycol did decrease the aw, neither potassium nor betaine was accumulated by the cells.  相似文献   

19.
The accumulation of intracellular organic solutes was examined in six species of the order Thermotogales by nuclear magnetic resonance spectroscopy. The newly discovered compounds di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate and di-myo-inositol-1,3'-phosphate were identified in Thermotoga maritima and Thermotoga neapolitana. In the latter species, at the optimum temperature and salinity the organic solute pool was composed of di-myo-inositol-1,1'(3,3')-phosphate, beta-glutamate, and alpha-glutamate in addition to di-myo-inositol-1,3'-phosphate and di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate. The concentrations of the last two solutes increased dramatically at supraoptimal growth temperatures, whereas beta-glutamate increased mainly in response to a salinity stress. Nevertheless, di-myo-inositol-1,1'(3,3')-phosphate was the major compatible solute at salinities above the optimum for growth. The amino acids alpha-glutamate and proline were identified under optimum growth conditions in Thermosipho africanus, and beta-mannosylglycerate, trehalose, and glycine betaine were detected in Petrotoga miotherma. Organic solutes were not detected, under optimum growth conditions, in Thermotoga thermarum and Fervidobacterium islandicum, which have a low salt requirement or none.  相似文献   

20.
While much understanding has been achieved on the intracellular sodium and potassium concentrations of halophilic and halotolerant microorganisms and on their regulation, we know little on the metabolism of anions. Archaea of the family Halobacteriaceae contain molar concentrations of chloride, which is pumped into the cells by cotransport with sodium ions and/or using the light-driven primary chloride pump halorhodopsin. Most halophilic and halotolerant representatives of the bacterial domain contain low intracellular ion concentrations, with organic osmotic solutes providing osmotic balance. However, some species show a specific requirement for chloride. In Halobacillus halophilus certain functions, such as growth, endospore germination, motility and flagellar synthesis, and glycine betaine transport are chloride dependent. In this organism the expression of a large number of proteins is chloride regulated. Other moderately halophilic Bacteria such as Halomonas elongata do not show a specific demand for chloride. A very high requirement for chloride was demonstrated in two groups of Bacteria that accumulate inorganic salts intracellularly rather than using organic osmotic solutes: the anaerobic Halanaerobiales and the aerobic extremely halophilic Salinibacter ruber. It is thus becoming increasingly clear that chloride has specific functions in haloadaptation in different groups of halophilic microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号