首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Guha M  England C  Herscovitz H  Gursky O 《Biochemistry》2007,46(20):6043-6049
Very-low-density lipoproteins (VLDL) are metabolic precursors of low-density lipoproteins (LDL) and a risk factor for atherosclerosis. Human VLDL are heterogeneous complexes containing a triacylglycerol-rich apolar lipid core and polar surface composed of phospholipids, a nonexchangeable apolipoprotein B, and exchangeable apolipoproteins E and Cs. We report the first stability study of VLDL. Circular dichroism and turbidity data reveal an irreversible heat-induced VLDL transition that involves formation of larger particles and repacking of apolar lipids but no global protein unfolding. Heating rate effect on the melting temperature indicates a kinetically controlled reaction with high activation energy, Ea. Arrhenius analysis of the turbidity data reveals two kinetic phases with Ea = 53 +/- 7 kcal/mol that correspond to distinct morphological transitions observed by electron microscopy. One transition involves VLDL fusion, partial rupture, and dissociation of small spherical particles (d = 7-15 nm), and another involves complete lipoprotein disintegration and lipid coalescence into droplets accompanied by dissociation of apolipoprotein B. The small particles, which are unique to VLDL denaturation, are comparable in size and density to high-density lipoproteins (HDL); they have an apolar lipid core and polar surface composed of exchangeable apolipoproteins (E and possibly Cs) and phospholipids. We conclude that, similar to HDL and LDL, VLDL are stabilized by kinetic barriers that prevent particle fusion and rupture and decelerate spontaneous interconversion among lipoprotein classes and subclasses. In addition to fusion, VLDL disruption involves transient formation of HDL-like particles that may mimic protein exchange among VLDL and HDL pools in plasma.  相似文献   

2.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2004,43(18):5520-5531
High-density lipoproteins (HDL) are macromolecular complexes of specific proteins and lipids that mediate the removal of cholesterol from peripheral tissues. Chemical unfolding revealed that HDL fusion and rupture are the two main kinetic steps in HDL denaturation. Here we test the hypothesis that lipid fusogens such as poly(ethylene glycol) (PEG) may promote lipoprotein fusion and rupture and thereby destabilize HDL. We analyze thermal disruption of spherical HDL in 0-15% PEG-8000 by calorimetric, spectroscopic, electron microscopic, and light scattering techniques. We demonstrate that the two irreversible high-temperature endothermic HDL transitions involve particle enlargement and show a heating rate dependence characteristic of kinetically controlled reactions with high activation energy. The first calorimetric transition reflects HDL fusion and dissociation of lipid-poor apolipoprotein A-1 (apoA-1), and the second transition reflects HDL rupture and release of the apolar lipid core. Neither transition involves substantial protein unfolding; thus, the transition heat originates from lipid and/or protein dissociation and repacking. At room temperature, PEG-8000 induces HDL fusion that is distinct from the heat-, denaturant-, or enzyme-induced fusion since it leads to formation of larger particles and does not involve apoA-1 dissociation. Increasing the PEG concentration in solution from 0 to 15% leads to low-temperature shifts by approximately -18 degrees C in the two calorimetric HDL transitions without altering their nature. Thus, consistent with our hypothesis, PEG-8000 induces fusion and reduces the thermal stability of HDL. Our results suggest that PEG is useful for the analysis of the molecular events involved in metabolic HDL remodeling and fusion.  相似文献   

3.
Hydrolysis and oxidation of LDL stimulate LDL entrapment in the arterial wall and promote inflammation and atherosclerosis via various mechanisms including lipoprotein fusion and lipid droplet formation. To determine the effects of FFA on these transitions, we hydrolyzed LDL by phospholipase A(2) (PLA(2)), removed FFA by albumin, and analyzed structural stability of the modified lipoproteins. Earlier, we showed that heating induces LDL remodeling, rupture, and coalescence into lipid droplets resembling those found in atherosclerotic lesions. Here, we report how FFA affect these transitions. Circular dichroism showed that mild LDL lipolysis induces partial β-sheet unfolding in apolipoprotein B. Electron microscopy, turbidity, and differential scanning calorimetry showed that mild lipolysis promotes LDL coalescence into lipid droplets. FFA removal by albumin restores LDL stability but not the protein conformation. Consequently, FFA enhance LDL coalescence into lipid droplets. Similar effects of FFA were observed in minimally oxidized LDL, in LDL enriched with exogenous FFA, and in HDL and VLDL. Our results imply that FFA promote lipoprotein coalescence into lipid droplets and explain why LDL oxidation enhances such coalescence in vivo but hampers it in vitro. Such lipid droplet formation potentially contributes to the pro-atherogenic effects of FFA.  相似文献   

4.
Apoprotein B, the major apoprotein of normal human low density lipoprotein (LDL) was solubilized with sodium deoxycholate (NaDC). The protein was recombined with the phospholipid dimyristoyl phosphatidylcholine (DMPC) to produce a complex of DMPC-apoB (4:1 w/w). (Biochemistry. 22: 3170-3178. 1983). Carboxyfluorescein and [3H]dextran entrapment studies show the DMPC-apoB 4:1 (w/w) complex to encapsulate an aqueous volume of 0.17 microliter/mumol of DMPC. From the chemistry and morphology of the complex and the evidence that the complex possesses an encapsulated volume, the most appropriate structural model for this assembly is that of a phospholipid single bilayer vesicle into which apoB is incorporated. Differential scanning calorimetry (DSC) and circular dichroic spectroscopy (CD) were used to investigate the physical properties of apoB in the mixed micellar complex with NaDC and in the vesicular DMPC-apoB complex. CD studies of apoB in NaDC mixed micelles show that apoB exhibits a similar secondary structure as apoB of native LDL over the temperature range 5-30 degrees C. Reversible structural changes occur between 30 and 50 degrees C. However, above 50 degrees C, disruption of the micellar particle and endothermic protein unfolding and denaturation occur with a Tmax of 52 degrees C and an enthalpy of 0.22 cal/g apoB, as shown by DSC. The DMPC-apoB complex exhibits a reversible thermal transition centered at 24 degrees C (delta H = 3.34 Kcal/mol DMPC) which is associated with the order-disorder transition of the hydrocarbon chains of DMPC. An endothermic transition occurs over the range 53-70 degrees C (delta H = 2.09 cal/g apoB) which, as shown by CD and turbidity study, corresponds to protein unfolding-denaturation and particle disruption. CD shows that apoB in the vesicular environment undergoes a series of conformational changes. The major alterations occur over the temperature range of the order-disorder transition of the phospholipid. Between 37-60 degrees C, the conformation is similar to that observed in native LDL.  相似文献   

5.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2006,45(14):4620-4628
High-density lipoproteins (HDL) mediate cholesterol removal and thereby protect against atherosclerosis. Mature spherical HDL contain the apolar lipid core and polar surface of proteins and phospholipids. Earlier, we showed that the structural integrity of HDL is modulated by kinetic barriers that prevent spontaneous protein dissociation and lipoprotein fusion and rupture. To determine the role of electrostatic interactions in the kinetic stability of mature HDL, here we analyze the effects of salt and pH on their thermal denaturation. In low-salt buffer at pH 5.7-7.7, HDL are highly thermostable. Increasing the salt concentration from 0 to 0.3 M NaCl causes low-temperature shifts in the calorimetric HDL transitions of up to -14 degrees C. This salt-induced destabilization leads to protein unfolding below 100 degrees C, facilitating the first Arrhenius analysis of HDL denaturation by circular dichroism spectroscopy. In 150 mM NaCl, two kinetic phases in HDL protein unfolding are observed: a faster phase with an activation energy E(a,fast) < or =15 kcal/mol and a slower phase with an E(a,slow) = 50 +/- 7 kcal/mol. Gel electrophoresis and electron microscopic data suggest that the faster phase involves partial protein unfolding but no significant protein dissociation or changes in HDL size, while the slower phase involves complete protein unfolding, partial protein dissociation, and HDL fusion. Hence, the slower phase may resemble HDL remodeling and fusion by plasma enzymes during metabolism. Analysis of the effects of various salts, sucrose, and pH suggests that HDL destabilization by salt results from ionic screening of favorable short-range electrostatic interactions such as salt bridges. Consequently, electrostatic interactions significantly contribute to the high thermostability of HDL in low-salt solutions.  相似文献   

6.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2007,46(19):5790-5797
Oxidation of low-density lipoprotein (LDL), the major cholesterol carrier in plasma, is thought to promote atherogenesis via several mechanisms. One proposed mechanism involves fusion of oxidized LDL in the arterial wall; another involves oxidation-induced amyloid formation by LDL apolipoprotein B. To test these mechanisms and to determine the effects of oxidation on the protein secondary structure and lipoprotein fusion in vitro, we analyzed LDL oxidized by nonenzymatic (Cu2+, H2O2, and HOCl) or enzymatic methods (myeloperoxidase/H2O2/Cl- and myeloperoxidase/H2O2/NO2-). Far-UV circular dichroism spectra showed that LDL oxidation induces partial unfolding of the secondary structure rather than folding into cross-beta amyloid conformation. This unfolding correlates with increased negative charge of oxidized LDL and with a moderate increase in thioflavin T fluorescence that may result from electrostatic attraction between the cationic dye and electronegative LDL rather than from dye binding to amyloid. These and other spectroscopic studies of low- and high-density lipoproteins, which encompass amyloid-promoting conditions (high protein concentrations, high temperatures, acidic pH), demonstrate that in vitro lipoprotein oxidation does not induce amyloid formation. Surprisingly, turbidity, near-UV circular dichroism, and electron microscopic data demonstrate that advanced oxidation inhibits heat-induced LDL fusion that is characteristic of native lipoproteins. Such fusion inhibition may result from the accumulation of anionic lipids and lysophospholipids on the particle surface and/or from protein cross-linking upon advanced lipoprotein oxidation. Consequently, oxidation alone may prevent rather than promote LDL fusion, suggesting that additional factors, such as albumin-mediated removal of lipid peroxidation products and/or LDL binding to arterial proteoglycans, facilitate fusion of oxidized LDL in vivo.  相似文献   

7.
The unfolding of human apolipoprotein B-100 in its native lipid environment, low density lipoprotein (LDL), and in a soluble, lipid-free complex with sodium deoxycholate (NaDC) has been examined using differential scanning calorimetry (DSC) and near UV circular dichroic (CD) spectroscopy. High resolution DSC shows that LDL undergoes three thermal transitions. The first is reversible and corresponds to the order-disorder transition of the core-located cholesteryl esters (CE) (Tm = 31.1 degrees C, delta H = 0.75 cal/g CE). The second, previously unreported, is reversible with heating up to 65 degrees C (Tm = 57.1 degrees C, delta H = 0.20 cal/g apoB) and coincides with a reversible change in the tertiary structure of apoB as shown by near UV-CD. No alteration in the secondary structure of apoB is observed over this temperature range. The third transition is irreversible (Tm = 73.5 degrees C, delta H = 0.99 cal/g apoB) and coincides with disruption of the LDL particle and denaturation of apoB. The ratio of delta H/delta HvH for the reversible protein-related transition suggests that this is a two-state event that correlates with a change in the overall tertiary structure of the entire apoB molecule. The second protein-related transition is complex and coincides with irreversible denaturation. ApoB solubilized in NaDC undergoes three thermal transitions. The first two are reversible (Tm = 49.7 degrees C, delta H = 1.13 cal/g apoB; Tm = 56.4 degrees C, delta H = 2.55 cal/g apoB, respectively) and coincide with alterations in both secondary and tertiary structure of apoB. The changes in secondary structure reflect an increase in random coil conformation with a concomitant decrease in beta-structure, while the change in tertiary structure suggests that the conformation of the disulfide bonds is altered. The third transition is irreversible (Tm = 66.6 degrees C, delta H = 0.54 cal/g apoB) and coincides with complete denaturation of apoB and disruption of the NaDC micelle. The ratio of delta H/delta HvH for the two reversible transitions indicates that each of these transitions is complex which may suggest that several regions or domains of apoB are involved in each thermal event.  相似文献   

8.
Reassembled low density lipoprotein (LDL) complexes have been prepared by the interaction of lipid-free sodium deoxycholate-solubilized apoprotein B (apoB) of native human LDL with preformed, 200 A in diameter, microemulsions of cholesteryl oleate (CO), surface-stabilized by either egg yolk phosphatidylcholine ( EYPC ) or dimyristoyl phosphatidylcholine (DMPC). Gel chromatography of PC/CO/apoB complexes shows co-elution of the complex at 43% PC, 43% CO, and 14% apoB. Negative stain electron microscopy shows the particles to be circular, homogeneous, and approximately 200 A in diameter. PC/CO/apoB complexes exhibit beta-migration on agarose gels and show one high molecular weight protein band on 3.0% sodium dodecyl sulfate-polyacrylamide gels. Differential scanning calorimetry and x-ray scattering show the lipids in the complexes to undergo at least two specific thermal transitions depending on lipid composition, one associated with the core-located cholesterol esters similar to LDL and the protein-free microemulsions and the other from the phospholipid forming the surface monolayer. In addition, particle disruption-protein unfolding/denaturation occur irreversibly at 80-85 degrees C. At 4 degrees C, the secondary structure of apoB on complexes of EYPC /CO/apoB is similar to that of native LDL. For complexes of DMPC/CO/apoB, the secondary structure shows less alpha-helix which correlates with the difference in surface lipid environment. The reassembled complexes of PC/CO/apoB provide a defined system in which the components may be varied systematically in order to study the molecular organization, molecular interactions, and metabolism of LDL.  相似文献   

9.
Very-low-density lipoprotein assembly and secretion   总被引:8,自引:0,他引:8  
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.  相似文献   

10.
When low density lipoprotein (LDL) is incubated with granules isolated from rat serosal mast cells, a fraction of LDL is bound to the granule heparin proteoglycan. If incubation is continued at 37 degrees C, the bound LDL, but not the unbound LDL, is degraded by granule neutral proteases. In the early stage of incubation, all the granule-bound LDL can be released by 0.3 M NaCl (the "salt-sensitive" fraction of LDL). With time, an increasing proportion of the granule-bound LDL requires 0.5 M NaCl for release (the "salt-resistant" fraction of LDL). Chemical analysis showed that, on average, 20% of the apolipoprotein B LDL was lost from the salt-sensitive fraction and 60% from the salt-resistant fraction, without any change in the composition of the lipid portion. Electron microscopic analysis disclosed large fused particles of LDL (diameters up to 100 nm) in the highly proteolyzed salt-resistant fraction, but no fused particles could be found in the less proteolyzed salt-sensitive fraction. We conclude that both binding and extensive degradation of LDL by mast cell granules is required for fusion of LDL particles on the granule surface. As compared with native LDL, the mast cell granule-modified LDL particles exhibit (i) increased particle size, (ii) selective loss of protein (apoB), (iii) a decrease in hydrated density, and (iv) stronger ionic interaction between apoB and heparin proteoglycan. The particles resemble the extracellular lipid droplets found in atherosclerotic lesions of both man and animals. Modification of LDL by mast cells may therefore provide a model of how these lipid structures are formed.  相似文献   

11.
M T Walsh  D Atkinson 《Biochemistry》1983,22(13):3170-3178
Apoprotein B (apoB) of human plasma low-density lipoprotein (LDL) (d 1.025-1.050 g/mL) has been solubilized with solid sodium deoxycholate (NaDC) above its critical micellar concentration. ApoB is isolated by gel-filtration chromatography as a mixed micellar complex of protein and detergent in high yield in a lipid-free form. A soluble apoB-dimyristoylphosphatidylcholine (DMPC) complex has been prepared by incubation of aqueous solutions of apoB-NaDC and DMPC-NaDC (2/1 w/w) at room temperature with detergent removal by extensive dialysis. A combination of gel chromatographic and density gradient fractionation of DMPC-apoB incubation mixtures demonstrates that a reasonably well-defined complex of DMPC and apoB is formed with a 4:1 w/w lipid:protein ratio. Negative-stain electron microscopy shows these particles to be single-bilayer phospholipid vesicles with a diameter of 210 +/- 20 A into which the apoB is incorporated. Circular dichroic spectra of NaDC-solubilized apoB show apoB to have similar conformation to that seen in the native LDL particle. However, apoB that has been complexed with DMPC exhibits more alpha-helix. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band (apparent Mr 366000) for apoB after solubilization, purification, and interaction with phospholipid. The behavior of apoB during its reassociation with phospholipid and the structural features of the DMPC-apoB particle are similar to those observed in the interaction of solubilized membrane proteins with lipid rather than that of other apo-lipoproteins.  相似文献   

12.
Lipid droplets and membrane material are produced in the extracellular matrix of the arterial intima during atherogenesis. Both in vitro and in vivo experimentation suggests that fusion of modified LDL particles leads to formation of such lipid droplets. Here we applied proton NMR spectroscopy to probe surface phospholipids phosphatidylcholine (PC) and sphingomyelin (SM) of LDL particles during proteolytic degradation of apolipoprotein B-100 (apoB-100). Initiation of apoB-100 degradation was accompanied by the abruptly increased intensity of the choline -N(CH(3))(3) resonance of PC molecules, indicating disruption of their interactions with apoB-100. However, subsequent particle fusion was accompanied by a steady decrease in the intensity of the choline resonances of both PC and SM. Electron microscopy of the proteolyzed LDL revealed irregularly shaped multilamellar membranes attached to aggregates of fused particles. This suggests formation of membrane material with low hydration, in which some of the atomic motions are hindered. Characterization of the behavior of the surface lipids of LDL particles during apoB-100 degradation and other types of LDL modification will aid in understanding molecular mechanisms leading to fusion and generation of multilamellar membrane material in the arterial intima during atherogenesis.  相似文献   

13.
The primary and secondary structures of apolipoprotein B-100 (apoB-100) are well established. Previous morphological studies have suggested that apoB is a long, flexible, threadlike molecule that encircles the low density lipoprotein (LDL) particle. Several large domain regions of the protein have been observed in frozen hydrated LDL and may be involved in anchoring of the protein to the lipid surface of LDL. Calorimetric studies of sodium deoxycholate (NaDC)-solubilized apoB indicated a similar number of independently melting domains. We therefore undertook a morphological study of NaDC-solubilized apoB-100 using negative stain and vitreous ice cryoelectron microscopy, a nonperturbing preservation technique. Negative staining experiments were performed in two ways: 1) grids were pulled through NaDC-containing buffer surfaces on which monolayers of apoB had been promoted, or 2) apoB molecules were allowed to diffuse onto carbon surfaces of grids that were floated on sample droplets. Vitrified molecules of apoB were obtained by plunging a thin fluid layer of protein adhered to a holey carbon-coated grid into supercooled ethane and by preserving the molecules in liquid nitrogen. The majority of molecules prepared in negative stain and vitreous ice were curved or arced and had alternating thin and thick regions. In negative stain, the apoB molecules lay on the grid perpendicular to the electron beam and had a mean length of 650 A. In vitreous ice the molecules were randomly oriented and their images ranged from 160 to 650 A in length. Vitrified molecules provided visualization of one or two beaded regions. Similar regions were observed in negative stain but the overall thickness was two to three times greater. Some vitrified molecules contained ribbon-like portions.Our study supports previously obtained data on molecule length but suggests that negative staining overestimates molecule width. These first images of vitrified NaDC-solubilized apoB-100 confirm the long, flexible, beaded thread morphology of the molecule and support the unique potential of this technique when coupled with proper molecule orientation and antibody labeling to correlate the tertiary structure of apoB seen in the intact particle with that of the isolated molecule.  相似文献   

14.
Gursky O  Ranjana  Gantz DL 《Biochemistry》2002,41(23):7373-7384
Thermal unfolding of discoidal complexes of apolipoprotein (apo) C-1 with dimyristoyl phosphatidylcholine (DMPC) reveals a novel mechanism of lipoprotein stabilization that is based on kinetics rather than thermodynamics. Far-UV CD melting curves recorded at several heating/cooling rates from 0.047 to 1.34 K/min show hysteresis and scan rate dependence characteristic of slow nonequilibrium transitions. At slow heating rates, the apoC-1 unfolding in the complexes starts just above 25 degrees C and has an apparent melting temperature T(m) approximately 48 +/- 1.5 degrees C, close to T(m) = 51 +/- 1.5 degrees C of free protein. Thus, DMPC binding may not substantially increase the low apparent thermodynamic stability of apoC-1, DeltaG(25 degrees C) < 2 kcal/mol. The scan rate dependence of T(m) and Arrhenius analysis of the kinetic data suggest an activation enthalpy E(a) = 25 +/- 5 kcal/mol that provides the major contribution to the free energy barrier for the protein unfolding on the disk, DeltaG > or = 17 kcal/mol. Consequently, apoC-1/DMPC disks are kinetically but not thermodynamically stable. To explore the origins of this kinetic stability, we utilized dynode voltage measured in CD experiments that shows temperature-dependent contribution from UV light scattering of apoC-1/DMPC complexes (d approximately 20 nm). Correlation of CD and dynode voltage melting curves recorded at 222 nm indicates close coupling between protein unfolding and an increase in the complex size and/or lamellar structure, suggesting that the enthalpic barrier arises from transient disruption of lipid packing interactions upon disk-to-vesicle fusion. We hypothesize that a kinetic mechanism may provide a general strategy for lipoprotein stabilization that facilitates complex stability and compositional variability in the absence of high packing specificity.  相似文献   

15.
The neutral carbohydrate content of both the protein (apoB) and lipid fractions of low density lipoproteins (LDL) from subjects with a predominance of small, dense LDL (subclass pattern B) was found to be lower than in subjects with larger LDL (subclass pattern A): 45 +/- 12 versus 64 +/- 13 mg/g apoLDL, and 58 +/- 8 versus 71 +/- 8 mg/g apoLDL (P less than 0.0005 for both). Sialic acid content of LDL lipids, but not apoB, was also reduced in subclass pattern B. ApoB and glycolipid carbohydrate content of total LDL and LDL density subfractions declined with increasing LDL density and decreasing particle diameter. Moreover, in LDL subfractions from pattern B subjects, carbohydrate content of LDL apoB, but not LDL glycolipid, was significantly lower in comparison with particles of similar size from pattern A subjects. Thus, in LDL subclass pattern B, reductions in LDL carbohydrate content are associated both with reduced concentrations of larger carbohydrate-enriched LDL subclasses, and with reduced glycosylation of apoB in all LDL particles. LDL glycolipids may vary with overall lipid content of LDL particles, but variation in apoB glycosylation may indicate differences in pathways for LDL production, and reduced apoB glycosylation may reflect the altered metabolic state responsible for LDL subclass pattern B.  相似文献   

16.
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.  相似文献   

17.
The thermal stability of the methionine repressor protein from Escherichia coli (MetJ) has been examined over a wide range of pH (pH 3.5-10) and ionic strength conditions using differential scanning calorimetry. Under reducing conditions, the transitions are fully reversible, and thermograms are characteristic of the cooperative unfolding of a globular protein with a molecular weight corresponding to the MetJ dimer, indicating that no dissociation of this dimeric protein occurs before unfolding of the polypeptide chains under most conditions. In the absence of reducing agent, repeated scans in the calorimeter show only partial reversibility, though the thermodynamic parameters derived from the first scans are comparable to those obtained under fully reversible conditions. The protein is maximally stable (Tm 58.5 degrees C) at about pH 6, close to the estimated isoelectric point, and stability is enhanced by increasing ionic strength in the range I = 0.01-0.4 M. The average calorimetric transition enthalpy (delta Hm) for the dimer is 505 +/- 28 kJ mol-1 under physiological conditions (pH 7, I = 0.125, Tm = 53.2 degrees C) and shows a small temperature dependence which is consistent with an apparent denaturational heat capacity change (delta Cp) of about +8.9 kJ K-1 mol-1. The effects of both pH and ionic strength on the transition temperature and free energy of MetJ unfolding are inconsistent with any single amino acid contribution and are more likely the result of more general electrostatic interactions, possibly including significant contributions from electrostatic repulsion between the like-charged monomers which can be modeled by a Debye-Hückel screened potential.  相似文献   

18.
Damage to apoB100 on low density lipoprotein (LDL) has usually been described in terms of lipid aldehyde derivatisation or fragmentation. Using a modified FOX assay, protein hydroperoxides were found to form at relatively high concentrations on apoB100 during copper, 2,2'-azobis(amidinopropane) dihydrochloride (AAPH) generated peroxyl radical and cell-mediated LDL oxidation. Protein hydroperoxide formation was tightly coupled to lipid oxidation during both copper and AAPH-mediated oxidation. The protein hydroperoxide formation was inhibited by lipid soluble alpha-tocopherol and the water soluble antioxidant, 7,8-dihydroneopterin. Kinetic analysis of the inhibition strongly suggests protein hydroperoxides are formed by a lipid-derived radical generated in the lipid phase of the LDL particle during both copper and AAPH mediated oxidation. Macrophage-like THP-1 cells were found to generate significant protein hydroperoxides during cell-mediated LDL oxidation, suggesting protein hydroperoxides may form in vivo within atherosclerotic plaques. In contrast to protein hydroperoxide formation, the oxidation of tyrosine to protein bound 3,4-dihydroxyphenylalanine (PB-DOPA) or dityrosine was found to be a relatively minor reaction. Dityrosine formation was only observed on LDL in the presence of both copper and hydrogen peroxide. The PB-DOPA formation appeared to be independent of lipid peroxidation during copper oxidation but tightly associated during AAPH-mediated LDL oxidation.  相似文献   

19.
Lipoprotein lipase (LPL) efficiently mediates the binding of lipoprotein particles to lipoprotein receptors and to proteoglycans at cell surfaces and in the extracellular matrix. It has been proposed that LPL increases the retention of atherogenic lipoproteins in the vessel wall and mediates the uptake of lipoproteins in cells, thereby promoting lipid accumulation and plaque formation. We investigated the interaction between LPL and low density lipoproteins (LDLs) with special reference to the protein-protein interaction between LPL and apolipoprotein B (apoB). Chemical modification of lysines and arginines in apoB or mutation of its main proteoglycan binding site did not abolish the interaction of LDL with LPL as shown by surface plasmon resonance (SPR) and by experiments with THP-I macrophages. Recombinant LDL with either apoB100 or apoB48 bound with similar affinity. In contrast, partial delipidation of LDL markedly decreased binding to LPL. In cell culture experiments, phosphatidylcholine-containing liposomes competed efficiently with LDL for binding to LPL. Each LDL particle bound several (up to 15) LPL dimers as determined by SPR and by experiments with THP-I macrophages. A recombinant NH(2)-terminal fragment of apoB (apoB17) bound with low affinity to LPL as shown by SPR, but this interaction was completely abolished by partial delipidation of apoB17. We conclude that the LPL-apoB interaction is not significant in bridging LDL to cell surfaces and matrix components; the main interaction is between LPL and the LDL lipids.  相似文献   

20.
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号