首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the dormancy of Saccharomyces cerevisiae ascospores had been broken, the synthesis of proteins was observed first, followed rapidly by synthesis of ribonucleic acid (RNA) and much later by deoxyribonucleic acid (DNA) synthesis. Phosphoglucomutase activity increased in a periodic (step) fashion, whereas the activity of five other enzymes increased linearly during germination and outgrowth. The rate of synthesis of these enzymes was highest at about the period of DNA replication. The amino acid pools of dormant spores contained high levels of proline, glutamic acid, and histidine. At 2 h after onset of germination, the pools of phenylalanine and methionine had disappeared and the other components had decreased significantly. By 3.5 h, with the exception of proline and cystine, most amino acid pool components had significantly increased.  相似文献   

2.
Outgrowth of B. subtilis spores depends on the action of DNA gyrase (comp. Matsuda and Kameyama 1980). Application of nalidixic acid (100 micrograms/ml) to dormant spores of Bacillus subtilis prevents the outgrowth. Application of nalidixic acid (100 micrograms/ml) during the early outgrowth phase (after a 20 min germination period) does not prevent, but only delay spore outgrowth. Germination of spores is not influenced. Nalidixic acid is an effective inhibitor of RNA synthesis in outgrowing spores, whereas vegetative cells are more resistant. Spores can grow out inspite of a remarkably reduced intensity of RNA synthesis. Nalidixic acid particularly inhibits the synthesis of stable RNA, probably that of ribosomal RNA. We suggest that DNA gyrase-catalyzed alterations in DNA structure are involved in the regulation of the gene expressional program of outgrowing B. subtilis spores.  相似文献   

3.
Deoxyribonucleic acid (DNA) synthesis during early outgrowth of spores of Bacillus cereus T (thy(-)) has been examined. (14)C-thymidine incorporated begins 2 to 5 min after germination and continues at a slow rate up to 30 min, after which the rate of (14)C-thymidine incorporation increases considerably. Early DNA synthesis up to 30 min after germination is dependent upon simultaneous protein synthesis. The examination of the stability of proteins synthesized soon after germination shows that they are susceptible to intracellular degradation. The evidence provided here indicates that protein degradation is the cause of observed dependence of DNA synthesis on simultaneous protein synthesis. The DNA synthesis occurring soon after germination is primarily a repair type synthesis which is followed by the onset of normal replication approximately 30 min after germination.  相似文献   

4.
Nucleic acid synthesis was studied during germination and outgrowth of normal spores of Bacillus subtilis, as well as of spores carrying the genome of phage phie. In a system in which development was restricted to the spore-darkening phase, synthesis of ribonucleic acid (RNA), but not deoxyribonucleic acid (DNA), was detected. The extent of RNA synthesis and turnover, during this phase was similar for the two types of spores. In a partially darkened population of spores of either type, there was little RNA degradation, whereas there was considerable turnover in a fully darkened population. The DNA-dependent RNA polymerase of dormant or dark spores was not active in vitro with phi DNA as template, although a sigma-like factor could be separated from the polymerizing activity by zone centrifugation. Within 40 min after resuspension of dark spores in a medium that allows outgrowth, the enzyme acquired the ability to transcribe the phage DNA efficiently. During outgrowth, both normal and carrier spores synthesized DNA, but in carrier spores this DNA was almost entirely phage specific. The pattern of RNA accumulation in normal spores was in two distinct phase (0 to 60 min and 90 to 180 min). The second phase was absent in outgrowing carrier spores. The burst of phage in carrier spores occurred at 160 to 180 min.  相似文献   

5.
Oxidative stress-induced damage, including 8-oxo-guanine and apurinic/apyrimidinic (AP) DNA lesions, were detected in dormant and outgrowing Bacillus subtilis spores lacking the AP endonucleases Nfo and ExoA. Spores of the Δnfo exoA strain exhibited slightly slowed germination and greatly slowed outgrowth that drastically slowed the spores'' return to vegetative growth. A null mutation in the disA gene, encoding a DNA integrity scanning protein (DisA), suppressed this phenotype, as spores lacking Nfo, ExoA, and DisA exhibited germination and outgrowth kinetics very similar to those of wild-type spores. Overexpression of DisA also restored the slow germination and outgrowth phenotype to nfo exoA disA spores. A disA-lacZ fusion was expressed during sporulation but not in the forespore compartment. However, disA-lacZ was expressed during spore germination/outgrowth, as was a DisA-green fluorescent protein (GFP) fusion protein. Fluorescence microscopy revealed that, as previously shown in sporulating cells, DisA-GFP formed discrete globular foci that colocalized with the nucleoid of germinating and outgrowing spores and remained located primarily in a single cell during early vegetative growth. Finally, the slow-outgrowth phenotype of nfo exoA spores was accompanied by a delay in DNA synthesis to repair AP and 8-oxo-guanine lesions, and these effects were suppressed following disA disruption. We postulate that a DisA-dependent checkpoint arrests DNA replication during B. subtilis spore outgrowth until the germinating spore''s genome is free of damage.  相似文献   

6.
Spore germination in the slime mold Dictyostelium discoideum was used as a model to study the developmental regulation of protein and mRNA synthesis. Changes in the synthesis of these macromolecules occur during the transition from dormant spore to amoebae. The study of the mechanisms which regulate the quantity and quality of protein synthesis can best be accomplished with cloned genes. cDNA clones which hybridized primarily with mRNAs from only spores or germinating spores and not with growing amoebae were collected. Three such clones, denoted pLK109, pLK229, and pRK270, were isolated and had inserts of approximately 500, 1,200, and 690 base pairs, respectively. Southern blot hybridization experiments suggested that each of the genes is present in multiple copies in the D. discoideum genome. RNA blot hybridizations were performed to determine the sizes of the respective mRNAs and their developmental regulation. The mRNA that hybridized to pLK109 DNA was present predominantly in spores and at 1 h after germination but was absent in growing amoebae. Its concentration dramatically dropped at 3 h. The mRNA present in spores is apparently larger (approximately 0.5 kilobase) than in the later stages of germination (0.4 kilobase), indicating processing of the RNA during germination. The mRNA that hybridized to pLK229 DNA was approximately 1.0 kilobase and was present in very low amounts during growth. Its concentration rose until 1 h after spore germination and decreased thereafter. pRK270-specific RNA was approximately 2.7 kilobases and was found predominantly at 1 h after germination. It was present in lower concentrations at 2 and 3 h after germination and was absent in spores and amoebae. In vitro translation of mRNA selected from 1-h polyadenylated RNA which was hybridized to pLK109 or pLK229 DNA gave proteins of molecular weights consistent with the sizes of the mRNAs as determined by the RNA blot analysis.  相似文献   

7.
The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.  相似文献   

8.
Pattern of 3H-uridine incorporation into RNA of spores of Onocleasensibilis imbibed in complete darkness (non-germinating conditions)and induced to germinate in red light was followed by oligo-dTcellulose chromatography, gel electrophoresis coupled with fluorographyand autoradiography. In dark-imbibed spores, RNA synthesis wasinitiated about 24 h after sowing, with most of the label accumulatingin the high mol. wt. poly(A)RNA fraction. There was noincorporation of the label into poly(A) + RNA until 48 h aftersowing. In contrast, photo-induced spores began to synthesizeall fractions of RNA within 12 h after sowing and by 24 h, incorporationof 3H-uridine into RNA of irradiated spores was nearly 70-foldhigher than that into dark-imbibed spores. Protein synthesis,as monitored by 3H-arginine incorporation into the acid-insolublefraction and by autoradiography, was initiated in spores within1–2 h after sowing under both conditions. Autoradiographicexperiments also showed that the onset of protein synthesisin the cytoplasm of the germinating spore is independent ofthe transport of newly synthesized nuclear RNA. One-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis of35S-methionine-labelled proteins revealed a good correspondencebetween proteins synthesized in a cell-free translation systemdirected by poly(A) +RNA of dormant spores and those synthesizedin vivo by dark-imbibed and photo-induced spores. These resultsindicate that stored mRNAs of O. sensibilis spores are functionallycompetent and provide templates for the synthesis of proteinsduring dark-imbibition and germination. Key words: Onoclea sensibilis, fern spore germination, gene expression, protein synthesis, sensitive fern, stored mRNA  相似文献   

9.
Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.  相似文献   

10.
Susceptibility to UV irradiation of B. cereus BIS-59 spores undergoing germination at various stages-dormant spores to vegetative cell stage and their ability to recover from radiation damage were studied. For a given dose of radiation, the number of spore photoproducts (SPP) formed in the DNA of dormant spores was about 5-times greater than that of thymine dimers (TT) formed in the DNA of vegetative cells. At intermediate stages of the germination cycle, there was a rapid decline in the UV radiation-induced SPP formed in DNA with a concomitant increase in the UV radiation-induced TT formed in DNA. Bacterial spores undergoing germination (up to 3 hr) in the low nutrient medium (0.3% yeast extract) displayed much higher resistance to UV radiation than those germinating in the rich nutrient medium, even though there was no discernible difference under the two incubation conditions in respect of the extent of germination and the time at which the outgrowth stage appeared (3 hr). This was due to the formation TT in the DNA of spores germinating in the low nutrient as compared to that of spores germinating in the rich-nutrient medium. In UV-irradiated dormant spores, SPP formed in the spore DNA did not disappear even after prolonged incubation in the non-germinating medium. However, when the UV-irradiated dormant spores were germinated in low or rich nutrient medium, a significant proportion of SPP in DNA was eliminated. The dormant spores incubated in either of the germinating media for 15 min and then UV-irradiated were capable of eliminating SPP (presumably by monomerization) even by incubation in a non-germinating medium and in the complete absence of protein synthesis (buffer holding recovery), thereby implying that spore-repair enzymes were activated in response to initial's germination. The acquisition of photo-reactivation ability appeared in spores subjected to germination only in the rich-nutrient medium at the outgrowth stage and required de novo synthesis of the required enzymes.  相似文献   

11.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

12.
Germinating spores of Micromonospora chalcea pass through three morphological stages: darkening, swelling and germ tube emergence. The process of germination has pH and temperature optima of 8.0 and 40 degrees C, respectively, and is not affected by activation treatments. Darkening, accompanied by a loss of heat resistance and refractility and a decrease in absorbance of the dormant spores, needs only energy, which can be obtained from endogenous sources, and exogenous cations. Agents that inhibit ATP formation block darkening, but inhibitors of macromolecular synthesis do not affect it. Swelling requires exogenous carbon but not nitrogen sources and is characterized by a 30 to 40% increase in spore diameter. RNA synthesis is necessary for swelling and inhibitors of protein synthesis delay this process. During this stage, maximum respiratory, cytochrome oxidase and catalase activities are reached. DNA synthesis starts at the beginning of germ tube emergence. This final stage requires both exogenous carbon and nitrogen sources and the sequence of macromolecular synthesis is RNA, protein and, finally, DNA. Rifampicin, streptomycin and mitomycin C prevent protein and DNA synthesis regardless of when added during germination. Rifampicin inhibits [3H]uridine incorporation immediately but there is a delay of about 160 min in the case of streptomycin or mitomycin C.  相似文献   

13.
The review deals with recent results and problems of gene expression during germination of Bacillus spores. Three problems were selected: 1. The activation of metabolism as a prerequisite for the synthesis of nucleic acids and proteins. 2. The activation of nucleic acid and protein synthesis during germination. 3. The gene expression programme of germinating spores. Using the highly sensitive two-dimensional polyacrylamide gel analysis three major classes of proteins were distinguished, depending on the time of onset and duration of their syntheses: a) proteins made throughout germination (main class), b) proteins whose synthesis started only after a lag phase and then continued throughout germination, and c) proteins which are synthesized only during the early phases of germination. The programme of protein synthesis is an indicator for the control of gene expression during germination. The regulation of expression of these major gene groups during spore outgrowth is discussed.  相似文献   

14.
A number of ribonucleic acids initiated synthesis during the first 15 min of germination of Rhizopus stolonifer sporangiospores. They included ribosomal, 5S, and transfer RNA, and a heterogeneously-sedimenting fraction that composed about 5% of the total cellular RNA; this fraction was unmethylated, did not compete with ribosomal RNA for hybridization to DNA, and was bound to poly dT-cellulose in a manner characteristic of RNAs containing polyadenylate segments. The nearly simultaneous onset of synthesis of the various RNAs with germination contrasts with the sequential onset of RNA synthesis reported for other fungal spores.  相似文献   

15.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

16.
17.
18.
Summary Synthesis of proteins, RNA and DNA is measured by incorporation of labelled precursors at different times during germination of Phycomyces spores.RNA and protein synthesis increases immediately after activation. DNa synthesis begins at a later stage (± 8 h) of germination when germ tubes are already present. Nuclear division occurs earlier in germination (±4–5 h) and is accompanied by a decrease in RNA synthesis. It can be concluded that at least most of the dormant spores are in the G2 phase of the cell cycle.Analysis of ribosomal RNA after pulse-chase labelling shows only three labelled compounds: a precursor molecule (2.25×106 daltons) and the two mature ribosomal RNA compounds (1.4×106 and 0.7×106 daltons). This suggests that the two rRNAs are formed directly from the precursor molecule. Cycloheximide totally blocks the transformation of the ribosomal precursor molecule into mature rRNA.  相似文献   

19.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

20.
Inactivation of Bacillus cereus spores during cooling (10 degrees C/h) from 90 degrees C occurred in two phases. One phase occurred during cooling from 90 to 80 degrees C; the second occurred during cooling from 46 to 38 degrees C. In contrast, no inactivation occurred when spores were cooled from a maximum temperature of 80 degrees C. Inactivation of spores at a constant temperature of 45 degrees C was induced by initial heat treatments from 80 to 90 degrees C. The higher temperatures accelerated the rate of inactivation. Germination of spores was required for 45 degrees C inactivation to occur; however, faster germination was not the cause of accelerated inactivation of spores receiving higher initial heat treatments. Repair of possible injury was not observed in Trypticase soy broth (BBL Microbiology Systems), peptone, beef extract, starch, or L-alanine at 30 or 35 degrees C. Microscopic evaluation of spores outgrowing at 45 degrees C revealed that when inactivation occurred, outgrowth halted at the swelling stage. Inhibition of protein synthesis by chloramphenicol at the optimum temperature also stopped outgrowth at swelling; thus protein synthesis may play a role in the 45 degree C inactivation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号