首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lactobacillus casei is a lactic acid bacterium that produces L-lactate as the main product of sugar fermentation via L-lactate dehydrogenase (Ldh1) activity. In addition, small amounts of the D-lactate isomer are produced by the activity of a D-hydroxycaproate dehydrogenase (HicD). Ldh1 is the main L-lactate producing enzyme, but mutation of its gene does not eliminate L-lactate synthesis. A survey of the L. casei BL23 draft genome sequence revealed the presence of three additional genes encoding Ldh paralogs. In order to study the contribution of these genes to the global lactate production in this organism, individual, as well as double mutants (ldh1 ldh2, ldh1 ldh3, ldh1 ldh4 and ldh1 hicD) were constructed and lactic acid production was assessed in culture supernatants. ldh2, ldh3 and ldh4 genes play a minor role in lactate production, as their single mutation or a mutation in combination with an ldh1 deletion had a low impact on L-lactate synthesis. A Deltaldh1 mutant displayed an increased production of D-lactate, which was probably synthesized via the activity of HicD, as it was abolished in a Deltaldh1 hicD double mutant. Contrarily to HicD, no Ldh1, Ldh2, Ldh3 or Ldh4 activities could be detected by zymogram assays. In addition, these assays revealed the presence of extra bands exhibiting D-/L-lactate dehydrogenase activity, which could not be attributed to any of the described genes. These results suggest that L. casei BL23 possesses a complex enzymatic system able to reduce pyruvic to lactic acid.  相似文献   

3.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

4.
Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion.  相似文献   

5.
6.
Succinic acid is not the dominant fermentation product from glucose in wild-type Escherichia coli W1485. To reduce byproduct formation and increase succinic acid accumulation, pyruvate formate-lyase and lactate dehydrogenase, encoded by pflB and ldhA genes, were inactivated. However, E. coli NZN111, the ldhA and pflB deletion strain, could not utilize glucose anaerobically due to the block of NAD(+) regeneration. To restore glucose utilization, overexpression of nicotinic acid phosphoribosyltransferase, a rate limiting enzyme of NAD(H) synthesis encoded by the pncB gene, resulted in a significant increase in cell mass and succinic acid production. Furthermore, the results indicated a significant increase in NAD(H) pool size, and decrease in the NADH/NAD(+) ratio from 0.64 to 0.13, in particular, the concentration of NAD(+) increased 6.2-fold during anaerobic fermentation. In other words, the supply of enough NAD(+) for NADH oxidation by regulation of NAD(H) salvage synthesis mechanism could improve the cell growth and glucose utilization anaerobically. In addition, the low NADH/NAD(+) ratio also change the metabolite distribution during the dual-phase fermentation. As a result, there was a significant increase in succinic acid production, and it is provided further evidence that regulation of NAD(H) pool and NADH/NAD(+) ratio was very important for succinic acid production.  相似文献   

7.
Lactococcus lactis FI9078, a construct carrying a disruption of the ldh gene, converted approximately 90% of glucose into lactic acid, like the parental strain MG1363. This unexpected lactate dehydrogenase activity was purified, and ldhB was identified as the gene encoding this protein. The activation of ldhB was explained by the insertion of an IS905-like element that created a hybrid promoter in the intergenic region upstream of ldhB. The biochemical and kinetic properties of this alternative lactate dehydrogenase (LDHB) were compared to those of the ldh-encoded enzyme (LDH), purified from the parental strain. In contrast to LDH, the affinity of LDHB for NADH and the activation constant for fructose 1,6-bisphosphate were strongly dependent on pH. The activation constant increased 700-fold, whereas the K(m) for NADH increased more than 10-fold, in the pH range 5.5-7.2. The two enzymes also exhibited different pH profiles for maximal activity. Moreover, inorganic phosphate acted as a strong activator of LDHB. The impact of replacing LDH by LDHB on the physiology of L. lactis was assessed by monitoring the evolution of the pools of glycolytic intermediates and cofactors during the metabolism of glucose by in vivo NMR. Structural analysis by comparative modeling of the two proteins showed that LDH has a slightly larger negative charge than LDHB and a greater concentration of positive charges at the interface between monomers. The calculated pH titration curves of the catalytic histidine residues explain why LDH maintains its activity at low pH as compared to LDHB, the histidines in LDH showing larger pH titration ranges.  相似文献   

8.
The effect of gossypol acetic acid, a potent male sterilent was studied on LDH from goat liver (LDH-A4), heart (LDH-B4) and testis (LDH-C4) in vitro. All the preparations of LDH were inhibited by gossypol when the reaction was carried out in pyruvate-lactate (direct) or lactate to pyruvate (reverse) directions. The IC50 of gossypol for the pyruvate oxidation by LDH isozymes varied between 16 and 42 microM in presence of 0.27 mM pyruvate and 0.15 mM NADH at 25 degrees C and pH 7.4 whereas for the lactate oxidation, IC50 was 125 microM in a system containing 3.3 mM lactic acid and 1.8 mM NAD at 25 degrees C and pH 9.0. Reciprocal plots due to Lineweaver-Burk showed that these isozymes are inhibited in a non-competitive manner with respect to pyruvate and lactate, and in a competitive fashion when NAD and NADH were varied as substrates. Ki values of LDH-A4, -B4 and -C4 isozymes in presence of gossypol were 20, 34 and 29 microM against pyruvate; 33, 43 and 45 microM against NADH; 85, 85 and 125 microM against lactate and 94, 108 and 83 microM against NAD respectively.  相似文献   

9.
10.
Biochemical characterization and kinetic analysis of epsilon-crystallin from the lenses of common ducks were undertaken to elucidate the enzyme mechanism of this unique crystallin with lactate dehydrogenase (LDH) activity. Despite the structural similarities between epsilon-crystallin and chicken heart LDH, differences in charge and kinetic properties were revealed by isoenzyme electrophoresis and kinetic studies. Bi-substrate kinetic analysis examined by initial-velocity and product-inhibition studies suggested a compulsory ordered Bi Bi sequential mechanism with NADH as the leading substrate followed by pyruvate. The products were released in the order L-lactate and NAD+. The catalysed reaction is shown to have a higher rate in the formation of L-lactate and NAD+. Substrate inhibition was observed at high concentrations of pyruvate and L-lactate for the forward and reverse reactions respectively. The substrate inhibition was presumably due to the formation of epsilon-crystallin-NAD(+)-pyruvate or epsilon-crystallin-NADH-L-lactate abortive ternary complexes, as suggested by the product-inhibition studies. The significance and the interrelationship of duck epsilon-crystallin with other well-known LDHs are discussed with special regard to its role as a structural protein with some enzymic function in lens metabolism.  相似文献   

11.
12.
L-lactate oxidation by skeletal muscle mitochondria   总被引:3,自引:0,他引:3  
1. Mitochondria isolated from rat skeletal muscle possess lactate dehydrogenase which is involved in direct oxidation of L-lactate in the presence of external NAD. 2. L-lactate oxidation can be stimulated in a reversible manner by ADP. 3. Mitochondrial lactate oxidation is sensitive to oxamate-inhibitor of LDH, alpha-cyano-3-hydroxy-cinnamate-pyruvate translocase inhibitor and respiratory chain inhibitors (rotenone, antimycin A, KCN). 4. In the same conditions the mitochondria did not oxidize pyruvate in the absence of malate, whereas, oxidize pyruvate plus external NADH in an uncoupling manner.  相似文献   

13.
A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported.  相似文献   

14.
15.
Acholeplasma laidlawii A possesses a nicotinamide adenine dinucleotide (NAD)-dependent l(+)-lactate dehydrogenase (LDH) which is activated specifically by low concentrations of fructose-1, 6-diphosphate (FDP). Studies with partially purified enzyme show that the kinetic response to FDP is hyperbolic. The enzyme is inhibited by inorganic phosphate, adenosine triphosphate, and high concentrations of reduced NAD (NADH). Low activity is demonstrable in the absence of FDP at pH 6.0 to 7.2, but FDP is absolutely required in the region of pH 8. FDP causes an upward shift in the optimum pH of the enzyme, which is near 7.2 in tris (hydroxymethyl)aminomethane buffer. Activation of the enzyme by FDP is markedly affected by substrate concentration; FDP lowers the apparent K(m) for pyruvate and NADH. The affinity of the enzyme for pyruvate is also influenced by H(+) concentration. The pyruvate analogue alpha-ketobutyrate serves as an effective substrate for the enzyme; when it is utilized, the enzyme is still activated by FDP. Reversal of the pyruvate reduction reaction catalyzed by the enzyme can be demonstrated with the 3-acetylpyridine analogue of NAD. The catalytic properties of the A. laidlawii enzyme and the known FDP-activated LDHs which occur among lactic acid bacteria are discussed.  相似文献   

16.
Glycollate inhibited growth of Pseudomonas aeruginosa in media containing either pyruvate or lactate as carbon sources. Glycollamide, but not glyoxylate, showed similar effects. Spontaneous mutants (L/G strains) were isolated that were able to grow on lactate medium in the presence of glycollate: their growth in pyruvate medium was still inhibited by glycollate. Synthesis of membrane-bound NAD+-independent D(-)- and L(+)-lactate dehydrogenase (iLDHs) was inducible by D- or L-lactate in the parent strain but was constitutive in the L/G strains. Glycollate inhibited induction of the synthesis of iLDHs in the parent strain growing in succinate medium but had no effect under the same conditions on strain L/G1. Glycollate was a competitive inhibitor of L(+)-iLDH (Ki = 11 mM). No differences were found in the kinetic properties of L(+)-iLDH in cell-free extracts from strain L/G1 and the parent organism. Glycollate appears to inhibit growth on lactate medium predominantly through prevention of lactate induction of iLDH synthesis.  相似文献   

17.
This study was an investigation of the interaction of lactate on pyruvate and glucose metabolism in the early mouse embryo. Pyruvate uptake and metabolism by mouse embryos were significantly affected by increasing the lactate concentration in the culture medium. In contrast, glucose uptake was not affected by lactate in the culture medium. At the zygote stage, the percentage of pyruvate taken up and oxidized was significantly reduced in the presence of increasing lactate, while at the blastocyst stage, increasing the lactate concentration increased the percentage of pyruvate oxidized. Lactate oxidation was determined to be 3-fold higher (when lactate was present at 20 mM) at the blastocyst stage compared to the zygote. Analysis of the kinetics of lactate dehydrogenase (LDH) determined that while the V(max) of LDH was higher at the zygote stage, the K(m) of LDH was identical for both stages of development, confirming that the LDH isozyme was the same. Furthermore, the activity of LDH isolated from both stages was reduced by 40% in the presence of 20 mM lactate. The observed differences in lactate metabolism between the zygote and blastocyst must therefore be attributed to in situ regulation of LDH. Activity of isolated LDH was found to be affected by nicotinamide adenine dinucleotide(+) (NAD(+)) concentration. In the presence of increasing concentrations of lactate, zygotes exhibited an increase in autofluorescence consistent with a depletion of NAD(+) in the cytosol. No increase was observed for later-stage embryos. Therefore it is proposed that the differences in pyruvate and lactate metabolism at the different stages of development are due to differences in the in situ regulation of LDH by cytosolic redox potential.  相似文献   

18.
19.
Based on requirements for acetate or lipoic acid for aerobic (but not anaerobic) growth, Lactococcus lactis subsp. lactis mutants with impaired pyruvate catabolism were isolated following classical mutagenesis. Strains with defects in one or two of the enzymes, pyruvate formate-lyase (PFL), lactate dehydrogenase (LDH) and the pyruvate dehydrogenase complex (PDHC) were obtained. Growth and product formation of these strains were characterized. A PFL-defective strain (requiring acetate for anaerobic growth) displayed a two-fold increase in specific lactate production compared with the corresponding wild-type strain when grown anaerobically. LDH defective strains directed 91-96% of the pyruvate towards alpha-acetolactate, acetoin and diacetyl production when grown aerobically in the presence of acetate and absence of lipoic acid (a similar characteristic was observed in an LDH and PDHC defective strain in the presence of both acetate and lipoic acid) and more than 65% towards formate, acetate and ethanol production under anaerobic conditions. Another strain with defective PFL and LDH was strictly aerobic. However, a variant with strongly enhanced diacetyl reductase activities (NADH/NAD+ dependent diacetyl reductase, acetoin reductase and butanediol dehydrogenase activities) was selected from this strain under anaerobic conditions by supplementing the medium with acetoin. This strain is strictly aerobic, unless supplied with acetoin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号